
Rapid Adaptation of Video Game AI

Rapid Adaptation of Video Game AI

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Tilburg,

op gezag van de rector magnificus,
prof. dr. Ph. Eijlander,

in het openbaar te verdedigen ten overstaan van een
door het college voor promoties aangewezen commissie

in de aula van de Universiteit
op woensdag  maart  om : uur

door

Sander Cornelus Johannes Bakkes
geboren op  januari  te Swalmen

Promotor: Prof. dr. H.J. van den Herik

Copromotor: Dr. ir. P.H.M. Spronck

Leden van de beoordelingscommissie:
Prof. dr. A.P.J. van den Bosch
Prof. dr. J-J.Ch. Meyer
Prof. dr. ir. G. van Oortmerssen
Prof. dr. E.O. Postma
Dr. D.W. Aha

e research reported in this thesis has been funded by NWO, the Netherlands Or-
ganization for Scientific Research, in the framework of the Rapid Online Learning for
Entertainment Computing (ROLEC) project, with grant number ...

e research reported in this thesis is part of the Interactive Collaborative Information
Systems (ICIS) project, supported by the Dutch Ministry of Economic Affairs, with grant
number BSIK.

SIKS Dissertation Series No. -
e research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

TiCC Ph.D. Series No. 

ISBN ----
© Sander Bakkes
Cover design by Job Pereboom, Studio Konstruktief

All rights reserved. No part of this publication may be reproduced, stored in a retrie-
val system, or transmitted, in any form or by any means, electronically, mechanically,
photocopying, recording or otherwise, without prior permission of the author.

Preface

In the early s, the video-game industry has grown to surpass the Hollywood movie in-
dustry in revenues. In recent years, video gaming has become a mass-market entertainment
industry on a par with TV, movies, and music. Modern video games have become increa-
singly realistic in their visual and auditory presentation. However, the artificial intelligence
(AI) of video games has not reached a high degree of realism yet. A major disadvantage of
current game AI is its inability to adapt adequately to game circumstances. e disadvan-
tage can be resolved by endowing game AI with adaptive behaviour, i.e., the ability to adapt
to game circumstances, generally by means of learning adequate game behaviour while the
game is in progress.

Current approaches to adaptive game AI typically require numerous trials to learn ef-
fective behaviour in online gameplay (i.e., game adaptation is not rapid). In addition, game
developers are concerned that applying adaptive game AI may result in uncontrollable and
unpredictable behaviour (i.e., game adaptation is not reliable). ese characteristics ham-
per the incorporation of adaptive gameAI in actual, commercially released video games.e
general goal of our research is to investigate to what extent it is possible to establish game
AI capable of adapting rapidly and reliably to game circumstances. Our findings, that are
discussed in this thesis, may be used by game developers for incorporation in actual video
games.

is thesis would not have been possible without the assistance and encouragement of a
large group of people. I was most fortunate that my supervisor, Jaap van den Herik, allowed
me to pursue my goals and I owe many thanks to his support and commitment. I highly
appreciate his comments and advise on my scientific writings, as well as his efforts in arran-
ging additional funding for finalising the research. A special gratitude goes out to my daily
advisor, Pieter Spronck, for supporting me so very dedicatedly, for his research inspiration,
and for the charm he brings to academia.

Moreover, I would like to thankmy colleagues at Tilburg University andMaastricht Uni-
versity. e supportive staff of both universities deserve my appreciation for their help in
many respects. I would especially like to mention Peter Geurtz for technical assistance in
the past, and Joke Hellemons, Leen Jacobs, and Dennis Tantradjaja for their ongoing efforts
in different areas of support. e research atmosphere that I experienced within the uni-
versity walls is one that I happily look back upon. I consider myself lucky to have worked in
an international environment, and secretly enjoyed the daily dosage of slightly unorthodox
behaviour and thoughts that it brought about. For that, I acknowledge gratefully all direct
colleagues, and roommates over the years. I would especially like to thank Steven de Jong,
Guillaume Chaslot, Alessandro Rossi, Sander Spek, Andreas Rüdel, Sophia Katrenko, and
Anne Bolders for their ongoing assistance, hospitality, and friendship.

During my research, I had the pleasure to supervise and cooperate with several stu-
dents. I explicitly thank Laurens van der Blom, Philip Kerbusch, Bart Mehlkop, and Fre-
derik Schadd, whose research efforts and their results have been integrated in the thesis.
In addition, I thank Tom Nowell and Alexander Seizinger for their generous assistance in
developing AI for the open-source S game environment.

ii Preface

Outwith the academia, I found the support of individuals and organisations for expres-
singmyself in the form of photography and DJ’ing. Here I emphasise the collective of photo-
graphers ‘Nxtlvl’, and the DJ’s of ‘Loki’. I acknowledge in particular the persons behind social
gatherings in various (improvised) settings, and in the ‘Ipanema’, ‘Zondag’, and ‘Landbouw-
belang’, for bringing together the many people that I will miss when obligations will change
my life after the thesis defence.

In conclusion to these acknowledgements, I would like to thank friends from my home-
town Swalmen and my brother Milan, with whom it was a pleasure to grow up. Ich bedank
mien leef oma veur ’tmichmitgaeve van häörwies laeveslesse die ouch op vandaag nag geljig
zin; en mien eljers, veur häör ónveurwaardelikke sjteun en vertroewe. Finalmente, gostaria
de expressar a minha felicidade por receber o amor da Cândida.

Sander Bakkes
March , 

Contents

Preface i

Contents iii

 Introduction 1
. Games . 1
. Game AI . 3

.. Goals . 3
.. Game developers’ approach to game AI 4
.. Academic approach to game AI . 5

. Problem statement and research questions 6
. Research methodology . 7
. esis structure . 8

 Background 11
. Video games . 11

.. History . 11
.. Game genres . 13
.. Game studies . 14
.. State of the industry . 15

. Research into game AI . 16
.. Entertainment and game AI . 16
.. Non-adaptive game AI . 17
.. Adaptive game AI . 19

. Chapter summary . 20

 Incremental adaptive game AI 21
. What is incremental adaptive game AI? . 22
. Incremental adaptive game AI with TEAM 23

.. Team AI . 23
.. e TEAM adaptation mechanism 24
.. TEAM vs. Quake III CTF team AI 27
.. Discussion of TEAM . 29

. Incremental adaptive game AI with TEAM 32
.. e TEAM adaptation mechanism 32
.. TEAM vs. QUAKE III CTF team AI 33
.. Discussion of TEAM . 36

. Practical applicability . 38
. Chapter conclusions . 39

iv Contents

 Case-based adaptive game AI 41
. What is case-based adaptive game AI? . 41

.. Case-based reasoning . 42
.. Approach . 42
.. Contributions and limitations of the approach 44

. Case-based adaptive game AI for map adaptation 45
.. Approach to map adaptation . 45
.. Experiment with map adaptation . 47
.. Discussion of the results . 55

. Case-based adaptive game AI in a simulated game 55
.. Simulated video game . 56
.. Gathering domain knowledge . 57
.. Exploiting domain knowledge . 59
.. Experiments with exploiting domain knowledge 62
.. Discussion of the results . 63

. Towards case-based adaptation in video games 64
. Chapter summary . 65

 e evaluation function 67
. Evaluation functions . 68

.. Evaluation functions in classic games 68
.. Evaluation functions in video games 69
.. Establishing an evaluation function 71
.. Exploiting game knowledge . 73

. An evaluation function for SPRING . 73
.. e game environment . 73
.. Towards a case base of game knowledge 76
.. Our evaluation function . 77
.. Phase of the game . 78
.. Material strength . 78
.. Commander safety . 79

. Validating the evaluation function . 79
.. Experimental setup . 80
.. Two measures for performance assessment 82
.. Measured performance . 82
.. Discussion of the results . 86

. Chapter conclusions . 87

 e adaptation mechanism 89
. Adaptation mechanisms . 89

.. Rapid adaptation . 90
.. Reliable adaptation . 91

. An adaptation mechanism for SPRING . 93
.. General adaptation procedure . 93

Contents v

.. Game indexing . 94
.. Clustering of observations . 94
.. Initialisation of game AI . 95
.. Similarity matching . 95
.. Online strategy selection . 96

. Validating the adaptation mechanism . 97
.. Experimental setup . 97
.. Performance assessment . 101
.. Exp: Results of game adaptation . 101
.. Exp: Results of difficulty scaling . 104
.. Discussion of the results . 105

. Chapter conclusions . 106

 Opponent modelling 109
. Opponent modelling . 109

.. Opponent modelling in classic games 110
.. Opponent modelling in video games 111

. Establishing opponent models in SPRING 113
.. Approach to establishing opponent models 113
.. Implementation of the approach . 114
.. Experiments with the implementation 116
.. Discussion of the results . 122

. Exploiting opponent models in SPRING . 123
.. Approach to exploiting opponent models 123
.. An experiment with exploiting opponent models 125
.. Discussion of the results . 127

. Chapter conclusion . 127

 Integrating the three components 129
. How to integrate the three components . 129
. Incorporating opponent modelling . 130

.. Establishing opponent models . 131
.. Exploiting opponent models . 132

. Experiments with case-based adaptive game AI 134
.. Experimental setup . 134
.. Performance assessment . 134
.. Generated opponent models . 135
.. Results of game adaptation . 135
.. Discussion of the results . 138

. Practical applicability . 139
.. Scalability . 139
.. Dealing with imperfect information 140
.. Generalisation to different games . 141
.. Acceptance by game developers . 142

vi Contents

. Chapter conclusions . 143

 Conclusions 145
. Answers to the research questions . 145
. Answer to the problem statement . 147
. Future research . 148

References 151

Appendices 171

A Game environments 171
A. Quake III CTF . 171
A. SPRING . 172

B Features of game observations in SPRING 177

C Evaluation function for SPRING 179

D Parameters of strategic behaviour in SPRING 183

Summary 185

Samenvatting 189

Curriculum vitae 193

Publications 195

SIKS dissertation series 197

TiCC Ph.D. series 205

Video games don’t affect kids, I mean
if Pac-Man affected us as kids, we’d
all be running around in darkened
rooms, munching pills and listening
to repetitive music.

Marcus Brigstocke (b. 1973) 1
Introduction

Over the last decades,modern video games have become increasingly realistic in their visual
and auditory presentation. However, artificial intelligence (AI) in games has not reached a
high degree of realism yet. Game AI is typically based on non-adaptive techniques (Milling-
ton, ). A major disadvantage of non-adaptive game AI is that once a weakness is disco-
vered, nothing stops the human player from exploiting the discovery. e disadvantage can
be resolved by endowing game AI with adaptive behaviour, i.e., the ability to adapt to game
circumstances, typically bymeans of learning adequate game behaviour while the game is in
progress. In practice, adaptive game AI in video games is seldom implemented because cur-
rently it requires numerous trials to learn effective behaviour in online gameplay (i.e., game
adaptation is not rapid). In addition, game developers are concerned that applying adaptive
game AI may result in uncontrollable and unpredictable behaviour (i.e., game adaptation is
not reliable). e general goal of the thesis is to investigate to what extent it is possible to
establish game AI capable of adapting rapidly and reliably to game circumstances.

Chapter  provides the motivation of the thesis research. In the chapter we first discuss
different types of game environments (Section .). Subsequently, we describe the current
state of game AI (Section .). Next, we formulate the problem statement that guides the
research, along with five research questions (Section .). en, we describe the research
methodology adopted in our research (Section .). Finally, we outline the structure of the
thesis (Section .).

1.1 Games

Abt () defines a game as an activity among two or more independent decision makers
seeking to achieve their objectives in some limiting context. In this definition, the decision
maker is the player of the game, and the context is the environment with accompanying ru-
les in which the game is played. By extension, competition for a single player, i.e., a puzzle,
may also be regarded as a game. is thesis concerns computer-game environments for two

 e plural “we” is used in the thesis, in recognition of the fact that research is an inherently collaborative
effort.

2 Introduction

or more players. e environments can roughly be divided into two groups, namely ‘classic
games’, and ‘video games’. Classic games, such as chess, checkers, and poker, are typically
played on a game board, or with game cards. Video games, such as C  C,
H-L, and W  W, we define as game environments requiring the in-
teraction with a user interface that is provided by a video device.

With the advance of AI techniques, games are no longer solely played by humans, but
are also played by computer-controlled players. For classic games, the goal of the computer-
controlled player typically is to exhibit the most challenging behaviour. In many classic ga-
mes, computer-controlled players have been able to outplay human professionals, such as
the World Champion in checkers (Schaeffer et al., ) and chess (Hsu, ). Recently,
professional players have been outplayed in the game of Go (Lee et al., ), which is con-
sidered one of themost complex classic games in existence. In addition, computer programs
have been able to solve challenging games such as Connect Four (Allis, , ; Allen,
) and checkers (Schaeffer et al., ).

eAI techniques developed to achieve these excellent results, however, cannot directly
be applied to video games, since video games differ characteristically from classic games
(Spronck, a). In previous work, Spronck (a) discusses in detail numerous differen-
ces. Below we single out the five differences that are most relevant from the perspective of
AI research.

Game-theoretical classification: Game theory distinguishes between perfect and imper-
fect information games, as well as between deterministic and stochastic games (Koller
and Pfeffer, ; Halck and Dahl, ). In perfect information games complete infor-
mation of the game environment is available, while in imperfect information games
part of the game environment is hidden from the player. In deterministic games no
element of chance is present, while in stochastic games chance plays a prominent role.
In general, classic games deal with much or even perfect information and are highly
deterministic (Spronck, a), while video games involve environments in which a
large percentage of information is hidden, at least initially, and are highly stochastic
(Buro, ; Chan et al., ).

Origin of complexity: e complexity of classic games arises from the interaction of a few
simple, transparent rules (Spronck, a). e complexity of a video game arises
from the interaction of large numbers of in-game objects and locations, controlled by
complex, opaque rules (Fairclough et al., ; Nareyek, ; Buro, ).

Pacing: Classic games usually progress at a slow pace (Nareyek, ), and typically require
each player to respond to the game environment in a turn-based fashion. Video ga-
mes, with the notable exception of turn-based strategy games, usually progress at a
fast pace (Nareyek, ), and typically require each player to respond to the game
environment in a real-time fashion.

 We note that, strictly speaking, video games are computer programs that present a game environment. To
distinguish between computer programs (such as KC) and classic games (such as chess), in the thesis
we indicate computer programs with small capitals.

1.2 | Game AI 3

Player skills: Classic games foremost require the human player to use one’s intellectual
skills. Video games require the human player to employ a wide variety of skills. In
addition to intellectual skills, video games may require the human player to use one’s
timing skills, imagination, reflexes, sensory abilities, emotions, and even ethical in-
sights (Spronck, a).

Goal: e goal of classic games is to provide a challenging play for the human player. e
goal of video games is to provide an entertaining play for the human player (Tozour,
a; Chan et al., ; Lidén, ). In this context, entertainment is a loosely defi-
ned, multifaceted notion that may refer to, for instance, engaging gameplay, approp-
riate challenge, and intelligent narrative.

As a result of the challenges provided by these differences, the field of AI research has ex-
tended over the past decade to encompass video games (Woodcock, ). So far,many chal-
lenges in the field of video game AI are not addressed to general satisfaction, even though
research in classic game AI has led to fruitful results. ese challenges are, among others,
pathfinding, spatial and temporal reasoning, and decision making under high uncertainty
(Buro and Furtak, ).

is thesis investigates game AI of modern video games. We note that the research has
little overlap with research in classic game AI. erefore, the term ‘game’ will henceforth be
used to refer to ‘video game’.

1.2 Game AI

Game AI is defined as the decision-making algorithms of game characters, that determine
the character’s behaviour (Wright and Marshall, ; Allen et al., ; Fairclough et al.,
; Nareyek, ). Early games, such as P and P-M, presented relatively simple
game environments where only rudimentary game AI was required.Modern games, such as
A’ C and F C , present complex and detailed game environments that
set high requirements to the game AI. Figure . gives an example of the visual realism that
is presented by modern video games.

In this section, we first describe the goals that game AI aspires to for providing entertai-
ning gameAI (..). Second, we discuss the approach that game developers take to establish
game AI (..). ird, we discuss the approach that academics take to establish game AI
(..).

.. Goals
ere are numerous goals that game AI aspires to for providing entertaining game AI.
Spronck (a) distinguishes between seven goals. e seven goals are summarised below,
arranged according to increasing difficulty.

No obvious cheating: Game AI should obtain its effectiveness without cheating obviously,
for instance, without executing actions that are in principle unavailable.

4 Introduction

Figure .: Game environment of the modern video game F C .

Unpredictable behaviour: e behaviour exhibited by the game AI should be unpredicta-
ble to the human player.

No obvious inferior behaviour: Game AI should not exhibit obvious inferior behaviour.

Using the environment: GameAI should be able to utilise and exploit intelligently features
of the game environment.

Self-correction: Game AI should be able to correct its behaviour to avoid repeating mista-
kes.

Creativity: Game AI should be able to generate novel solutions to unforeseen game cir-
cumstances.

Human-like behaviour: e behaviour exhibited by game AI should be indistinguishable
to the in-game behaviour exhibited by human players.

Of these seven goals, only the first four have been (partially) addressed by game develo-
pers. e remaining goals are foremost subject to academic research.

.. Game developers’ approach to game AI
Game developers use the term ‘game AI’ in a relatively broad sense, to refer to techniques
that control all facets of the behaviour of game characters. Typically, for them the term refers
to low-level facets of game-character behaviour, such as aiming,maneuvering, and character
animation. It may even refer to the generation of random numbers (Rabin, a).

1.2 | Game AI 5

In modern games, the intelligent behaviour of game characters is often established on
the basis of tricks and cheats (Laursen and Nielsen, ). For instance, in the game H-
L only two of the opponent characters were allowed to attack the player at any given time.
e result was that when a non-attacking opponent character was ready to attack, an already
attacking opponent character was chosen and instructed to run for cover. It was found that
human players confronted with the scenario did not notice that only two opponent charac-
ters were attacking at the same time (Laursen and Nielsen, ). In an enhanced scenario,
opponent characters running for coverwould yell “Coverme!”, or “Flanking!”. Human players
were surprisingly overwhelmed by the illusion of collaborative teamwork that was presen-
ted by the enhanced scenario (Laursen and Nielsen, ), and assumed intelligence where
none existed (Lidén, ).

Tricks and cheats may indeed be instrumental in establishing the so-called illusion of
intelligence (Crawford, ). Research has shown that players generally appreciate gameAI
which maintains the illusion that the AI is really intelligent (Scott, ). However, merely
applying tricks and cheats is far from adequate for upholding the illusion of intelligence.
Especially in the increasingly realistic game environments that are typically presented by
modern games, an inadequacy of the game AI will be particularly apparent.

Over the last decade, game developers have increasingly attempted to compete by of-
fering a better gameplay experience (Tozour, a; Graepel et al., ). As game AI is
an essential element of gameplay, game developers increasingly emphasise the quality of
their game AI. However, to establish better game AI, game developers need help from the
academic community (Laird, ; Rabin, b). is is discussed in the next subsection.

.. Academic approach to game AI
Academics use the term ‘game AI’ in a relatively strict sense, to refer to techniques that
control the intelligent behaviour of game characters. Typically, the term refers to relatively
complex behaviour of game characters, such as long-term planning, anticipating opponent
behaviour, and reasoning over observations.

Rule-based systems are a common technique for establishing such intelligent behavi-
our, usually in the form of scripts (Nareyek, ; Tozour, b). e advantage of the
use of scripts is that they are user friendly, and that the behaviour resulting from its imple-
mentation can be predicted straightforwardly (Tozour, b; Tomlinson, ). However,
stemming from the complexity of modern game environments, the disadvantage of the use
of scripts is that they tend to be extensive and complex (Brockington andDarrah, ), and
prone to contain design flaws and programming mistakes (Nareyek, ).

A similar but more advanced approach to game AI is goal-oriented behaviour (GOB).
Goal-oriented behaviour is a blanket term that covers any decision-making technique that
is explicitly seeking to fulfil a game character’s internal goals or desires (Millington, ).
Typically, it is implemented as a high-level decision maker to execute predefined scripts.
ough the approach can give surprisingly sensible results, it generally fails to take account
of timings and the side effects that certain decisions may have (Millington, ).

Alternatively, intelligent behaviour can be established automatically, by incorporating
machine learning techniques into the game AI. Generally, the focus is on the fifth and the

6 Introduction

sixth goal listed in Subsection ..: ‘self-correction’ and ‘creativity’; i.e., its focus is on adap-
tive game AI. Adaptive game AI is game AI that is capable of adapting to changing cir-
cumstances, typically by means of learning adequate game behaviour while the game is in
progress, i.e., online learning. Incorporating the capability of online learning in video ga-
mes is particularly challenging, because current machine learning techniques are not ide-
ally suited for integration in video-game environments. Generally, these techniques require
numerous learning trials, make numerous mistakes before obtaining successful behaviour,
and are computationally expensive (Spronck, a). erefore, game researchers often opt
to design special purpose mechanisms for adaptation of game AI, which has yielded good
results in previous research (Demasi and Cruz, ; Graepel et al., ; Spronck, a).
Still, a recurring characteristic of adaptive game AI is its difficulty with establishing rapid
adaptation of game AI. e reason is that current approaches to adaptive game AI require
either () a high quality of the domain knowledge used (which generally is unavailable to
the AI), or () a large number of trials to learn effective behaviour online (which is highly
undesirable in an actual video game).

In addition, game developers and their publishers are distrustful of academic game AI
(Fairclough et al., ). Personal communication with game developers indicated that this
stems predominantly from a perceived lack of reliability of academic game AI. For instance,
game developers are concerned that when a player deliberately provides adaptive game AI
with ‘bad’ learning examples, as a result it will exhibit inferior behaviour (Woodcock, ;
Charles and Livingstone, ). To ensure that AI techniques developed within the aca-
demia are incorporated in the video games for which they are designed, it is vital that re-
searchers focus on the reliability of their techniques, and preferably incorporate means to
enforce their techniques to operate within strictly defined margins of reliability.

1.3 Problem statement and research questions

econtents of the three subsections of Section . lead us straightforwardly to our problem
statement. Subsection .. described seven goals that game AI aspires to for providing en-
tertaining gameAI.We stated that only the fourmost uncomplicated goals have been (parti-
ally) addressed by game developers. Subsection .. indicated that to establish better game
AI, game developers need help from the academic community. Subsection .. indicated
that the quality of game AI can be enhanced by incorporating the ability of self-correction
and artificial creativity. ese two goals are called ‘adaptive game AI’. For adaptive game
AI to be suitable for use in practice, in an actual, complex video game, the game requires
the ability to adapt rapidly and reliably to game circumstances. Consequently, our problem
statement reads as follows.

Problem statement: To what extent can adaptive game AI be created with the
ability to adapt rapidly and reliably to game circumstances?

Below, as a guideline to answer the problem statement, we formulate five research ques-
tions. A common approach to implement adaptive game AI focusses on the online learning

1.4 | Research methodology 7

of adequate game behaviour in an incremental fashion. We refer to this approach as ‘in-
cremental adaptive game AI’. Incremental adaptive game AI has obtained good results in
previous research, and may be suitable to establish game AI with the ability of rapid and
reliable adaptation. e first research question therefore reads as follows.

Research question : To what extent is incremental adaptive game AI able to
adapt rapidly and reliably to game circumstances in an actual video game?

ough improved results may be expected when using incremental adaptive game AI,
the approach is not specifically designed to establish rapid and reliable adaptation of game
AI. To our knowledge, an approach that specifically focusses on rapid and reliable adapta-
tion of game AI does not exist. erefore, we choose to design such an approach. In our
research, we assume that three main components are required to establish rapid and relia-
ble adaptation of game AI, namely () an evaluation function, () a mechanism for online
adaptation of game AI, and () opponent modelling. e second, third, and fourth research
question therefore read as follows.

Research question : To what extent can a suitable evaluation function for a
complex video game be established?

Research question : To what extent can a mechanism be employed to provide
online adaptation of game AI?

Research question : To what extent can models of the opponent player be es-
tablished and exploited in a complex video game?

Game developers will consider using an alternative approach to game AI when they are
convinced of its qualitative effectiveness. e remainder of the thesis focusses primarily on
designing and demonstrating such an alternative approach. We refer to our approach as
‘case-based adaptive game AI’. Case-based adaptive game AI incorporates the three afore-
mentioned components. In our research, we investigate case-based adaptive game AI as a
proof of concept. A convincing illustration of case-based adaptive gameAI, is to demonstrate
it in the environment for which it is designed. e fifth research question therefore reads as
follows.

Research question : To what extent is case-based adaptive game AI able to
adapt rapidly and reliably to game circumstances in an actual video game?

e answers to these five research questions will allow us to formulate an answer to the
problem statement.

1.4 Research methodology

A research methodology is an essential element of every research project (Weigand et al.,
). Within our research we use three methodologies, namely () literature research, ()

8 Introduction

RQ RQ RQ RQ RQ

Literature research × × × ×
Software experiments × × × × ×
Applicability analysis × ×

Table .: Research methodologies used for answering the research questions.

software experiments, and () applicability analysis. e software experiments concern a
(quantitative) empirical evaluation.Wediscuss the adoptedmethodology per research ques-
tion (summarised in Table .).

To answer research question , we will establish incremental adaptive game AI that is
aimed at providing rapid and reliable adaptation to game circumstances. To this end, first
we will perform a literature research to select a successful implementation of incremental
adaptive game AI. Second, we will adapt the selected implementation for the purpose of
providing rapid and reliable adaptation, and will subsequently test the implementation in
software experiments performed in an actual video game. ird, we will provide an analysis
of the practical applicability of incremental adaptive game AI.

We introduce case-based adaptive game AI as an alternative to incremental adaptive
game AI. e three main components of case-based adaptive game AI are investigated ac-
cording to research question , , and .

To answer research question , we will establish an evaluation function based on in-
sights obtained from the literature. Subsequently, we will test the evaluation function using
software experiments performed in an actual video game.

To answer research question , first we will perform a literature research to identify a
suitable mechanism for online adaptation of game AI. Second, we will perform software
experiments to validate the adopted mechanism in an actual video game.

To answer research question , we will perform a literature research to identify a suit-
able method for establishing and exploiting models of the opponent player in video games.
Subsequently, we will perform software experiments to validate the adopted method in an
actual video game.

To answer research question , first we will perform software experiments that test a
complete implementation of case-based adaptive game AI in an actual video game. Second,
we will provide an analysis of the practical applicability of case-based adaptive game AI.

1.5 Thesis structure

In the thesis we study rapid adaptation of video game AI. In our study, we consider that for
rapid adaptation to be accepted by game developers, game adaptation needs to be reliable.

e problem statement and research questions are introduced in Chapter . ere we
also describe the adopted research methodology and the structure of the thesis. Table .
summarises which research questions are addressed in the chapters of the thesis.

1.5 | Thesis structure 9

RQ RQ RQ RQ RQ PS

Chapter  ×
Chapter  ×
Chapter  ×
Chapter  ×
Chapter  ×
Chapter  × × × × × ×

Table .: Problem statement and research questions addressed by the different chapters.

In Chapter  we provide the background information relevant to the topic of the the-
sis. Subsequently, in Chapter , we investigate incremental adaptive game AI (in accor-
dance with research question ). In Chapter  we describe case-based adaptive game AI,
and perform preliminary experiments to test the concept of the approach. en, in Chap-
ter  throughChapter we discuss each component of case-based adaptive gameAI in detail.

In Chapter  we discuss how to establish a suitable evaluation function for a video game
(in accordance with research question ). In Chapter  we discuss the mechanism that we
employ for online adaptation of game AI (in accordance with research question ). In Chap-
ter  we discuss how to establish and exploit models of the opponent player (in accordance
with research question ). In Chapter  we report on experiments that integrate the three
main components of case-based adaptive game AI. e experiments test a complete im-
plementation of case-based adaptive game AI in an actual video game (in accordance with
research question ). In Chapter  we answer the research questions, we translate the ans-
wers to an answer to the problem statement, and finally, we give recommendations for future
research.

2
Background

Game AI research started as a mathematical subject mostly focussed on search algorithms.
With the rising popularity of video games, some researchers shifted their attention towards
creating human-like characters in game environments. From this point on, gameAI research
expanded into additional disciplines, e.g., computer science, social sciences, and arts. e
focus of the present research is on creating AI that can be employed successfully in the
present-day, complex video games.

Chapter  provides background information in support of the present research. In the
chapter we first discuss background information on the topic of video games (Section .).
Subsequently, we give an overview of previous research on the application of AI techniques
in video games (Section .). Finally, we provide a summary of the chapter (Section .).

2.1 Video games

is section provides a concise overviewof scientific research into video games. First, wewill
present a short history of video games (..). Second, different game genres are discussed
(..). ird, three approaches to scientific studies into video games are described (..)
Finally, we discuss the state of the video-game industry (..).

.. History

In , the researchers Goldsmith, Grove, and Mann received a patent for their C-
R T A D (Goldsmith et al., ). e proposed device would be a
missile simulator which was inspired by radar displays fromWorldWar II.e device would
use eight vacuum tubes to simulate a missile firing at a target, and would use knobs to adjust
the curve and speed of the missile. is became known as the very first concept for a video
game.

12 Background

e first game to use a graphical display in practice, was the game T  T.
is video game was created in the year , and was a predecessor of P, one of the
most widely recognized video games as well as one of the first.

Game aficionados had to wait till the year , when the first video game became com-
mercially available in the formof S.e game S, illustrated in Figure .,
was developed at MIT, which had in its possession the then state-of-the-art DEC PDP-
computer. Steve Russell, a fellow at MIT’s Hingham Institute, decided that he had to do
something exciting with it (Baratz, ). Brand () quotes Russell who said:

“It had... a cathode-ray tube display... Here was this display that could do all
sorts of good things! So we started talking about it, figuring what would be in-
teresting displays. We decided that probably you could make a two-dimensional
maneuvering sort of thing, and decided that naturally the obvious thing to do was
spaceships.”

e game created by Russell inspired the engineers Bushnell and Dabney to build ,
arcade machines on which a clone of S could be played. Despite the project being
a commercial failure, the engineers persevered in their goal to bring video games to a main-
stream audience, and in the year  they established the video-game company Atari.
ough the first video-game console had already been released by Magnavox, it was Atari
who, by pioneering in arcade machines, home video-game consoles, and home computers,
helped define the video-game industry from the s to the mid s.

As the capabilities of computers in terms of processing power advanced, so did the com-
plexity of video games. In the s a team consisting of only a couple of people could create
a top-rated game (Spronck, a). Currently, game-development teams consist of hund-
reds of people, with development costs of a top-rated game of around twenty million dollars
(Richtel, ), and in rare cases as high as one-hundred million dollars (Rogers, ).
For a long time the processing power of computers was mainly invested into creating better
graphics (Spronck, a). When in the late s specialised D video cards became avai-
lable and widespread, its use freed up processing power for other gameplay features, such
as game AI (Tozour, a).

roughout the years, video games have become so realistic that computer-controlled
characters in these games are expected to behave realistically (Laird and Van Lent, ).
Still, game AI has not yet reached a high degree of realism (Fenley, ; Millington, ).
In the last few years, however, the developers of video games have increasingly emphasised
the importance of high-quality game AI, and incorporated game-AI programming as an
important activity in game development (Spronck, a).

 We note that before the release of the first video game, computers were already able to represent and play
several classic games. A notable example is the  T-T-T computer program that was created by A.S.
Douglas as part of his Ph.D. research (Douglas, ).
 In the thesis, the term ‘dollar’ is used as a reference to the official currency of the United States of America.

2.1 | Video games 13

Figure .: S, one of the earliest known video games.

.. Game genres

Video games can be categorised into different genres. Due to a general lack of genres com-
monly agreed-upon or criteria for the definition of genres, the classification of games is not
always consistent or systematic, and sometimes is seemingly arbitrary between sources. For
instance, Fairclough et al. () distinguish ‘action games’, ‘adventure games’, ‘role-playing
games’, and ‘strategy games’. To these four genres, Schaeffer () adds ‘god games’ and
‘sports games’, and Spronck (a) adds ‘simulation games’ and ‘puzzle games’.

ough by no means an exhaustive list can be established, my view is that by addition
of ‘simulation games’ to the selection by Fairclough et al. (), the vast majority of games
can be categorised. is leads to the categorisation of games into the following five genres:
action games, adventure games, role-playing games, simulation games, and strategy games.
We discuss the different genres below.

Action: Action games are games that foremost challenge players’ physical reaction speed
and precision.e fourmain types of action games are fighting games (such as S
F), platform games (such as S M B.), shooter games (such as
D H), and sports games (such as FIFA S).

Adventure: Adventure games focus on narrative challenges, and typically require players
to interact socially with game characters, explore the gameworld, and solve problems.

14 Background

etwomain types of adventure games are text-based adventures or interactive fiction
(such as Z), and graphical adventures (such as M I).

Role-playing: Computer role-playing games (CRPGs) are derived from traditional, i.e., ta-
bletop, role-playing games, especially D  D. Role-playing games
focus on narrative challenges, and typically require the player to assume the role of a
game character which evolves over the course of the game. Gameplay in this genre
is focussed on solving challenges, called ‘quests’. e two main types of computer
role-playing games are single-player role-playing games (such as B’ G),
and massively multiplayer online role-playing games (MMORPGs) (such as W
 W).

Simulation: Simulation games intend to simulate parts of the real world, or of a fictional
world. e objective of the game depends on the world being simulated, and the po-
sition taken by players within this world. e two main types of simulation games are
god games (such as SC), and vehicle simulations (such as F S).

Strategy: Strategy games primarily focus on players’ decision-making capabilities, and ty-
pically are played in an environment where chance does not play a prominent role in
the outcome of the game. e three main types of strategy games are puzzle games
(such as L), turn-based strategy games (such as C), and real-
time strategy games (such as C  C).

In the thesis, we focus on real-time strategy games, as well as on action games (parti-
cularly, first-person shooter games). One should note that games may be developed as so-
called hybrids, combining elements that are characteristic to one or more game genres. An
example of a hybrid game is T L  Z, which has elements of action, adven-
ture, and role-playing. In fact many games are developed as a combination of several genres
(Spronck, a), a phenomenon that can be explained by the attempt of game developers
to create an original game that exhibits the best of different genres (Slater, ).

.. Game studies
roughout the years, video games have gained significant academic interest. Education
programmes have been established that particularly focus on game design and development,
and academic disciplines have emerged that focus specifically on video games. Studies into
video games can be divided into three approaches: () the social-science approach, () the
humanities approach, and () the computer-science approach.

e social-science approach refers to the study on the effect of video games on people.
Some studies focus on behaviour that may be evoked by video games (e.g., gaming addiction
and violent behaviour). Other studies focus on behaviour observed within a video-game
environment. For instance, economic aspects of human-decision making are being studied
in massively multiplayer online games (MMOGs) (Castronova, ). Video games are seen
as a suitable research platform, where () a high number of participants can be included, and
() tightly controlled experimental conditions can be achieved (Castronova, ).

2.1 | Video games 15

e humanities approach refers to investigating the various roles that video games play
in people’s lives and activities, together with the meaning which people assign to their expe-
riences (Consalvo and Dutton, ). e two main approaches within this field of research
are () narratology, which models video games as a storytelling medium, one that arises out
of interactive fiction (Murray, ), and () ludology, which models video games first and
foremost as just that; games that needs to be understood in terms of its rules, interface, and
in terms of the concept of play (Juul, ).

e computer-science approach refers to the use of video games as a platform for techno-
logical progress. As games often simulate aspects of reality (Spronck, a), the simulation
of these aspects drives innovation in fields such as graphics, human-computer interaction,
networking, andAI.e video-game industry has discovered research into AI as a necessary
ingredient tomake gamesmore entertaining and challenging, and, vice versa, AI in video ga-
mes serves as a challenging application domain for researchers (Laird and Van Lent, ).
As AI in video games must be able to simulate human-like behaviour to a large extent, video
games are ideally suited to understand and develop AI systems with human-like capabilities
(Laird and Van Lent, ; Sawyer, ).

In the thesis, we focus on the computer-science approach to game studies.

.. State of the industry
In the early s, the video-game industry has grown to surpass the Hollywood movie
industry in revenues (Fairclough et al., ; Snider, ), and in recent years, video gaming
has become a mass-market entertainment industry on a par with TV, movies, and music
(Wolf, ). To illustrate the popularity of video games, Velasco () notes that after
the release of a top-rated game, such as H , movie theaters will suffer from smaller
attendance. As a result, the movie industry currently plans the premiere of a movie in close
consideration of the release dates of video games.

e video-game industry is expected to double in sales from ’s . billion to .
billion in the year  (Wolf, ). Traditional single-player games are expected to remain
high sellers, but the strongest growth is expected in online gaming, mobile gaming, serious
gaming, and in-game advertising. We discuss these growing market segments below.

Online gaming: Online gaming refers to playing a game over a computer network. In the
early years of online gaming, a game would be played over amodem or over local-area
networks (LANs). Currently, popular games such as W  W connect
millions of players over the internet, typically at the charge of a monthly fee. Wolf
() expects the online-gaming segment to grow by  each year until it is the
dominating force in the video-game market in .

Mobile gaming: Mobile gaming refers to playing a game on a wireless device, such as amo-
bile phone or a handheld computer. Currently, the average play time of mobile games
is  minutes (Agarwal, ). e most successful mobile games therefore are simple
and easy games, such as T and P- (Furini, ). Driven by advancement
in technology (such as location technologies), themobile-gaming segment is expected
to grow to . billion by  (Nguyen et al., ).

16 Background

Serious gaming: Serious gaming is a term coined in the year , that refers to the ex-
ploitation of video games and video-game software tools for a purpose other than
pure entertainment (Stone, ). Serious games are intended to provide an enga-
ging, self-reinforcing context in which to motivate and educate the players (Ferguson,
), for instance for the training of medical professionals. Sources estimated the
market-segment to have grown to  billion in the year , with a current trend of
growth of around twenty per cent on a yearly basis (Alhadeff, ).

In-game advertising: In-game advertising refers to the use of video games as a medium in
which to deliver advertising. Advertisers see in-game advertising as a prime way to
target a broad audience, which is increasingly neglecting television in favour of video
games (Yi, ). Sources estimate in-game advertising to become a market segment
worth close to  billion by the year  (Wolf, ). Some researchers expect that
the ability to play music and media from powerful consoles and handhelds will drive
overall industry growth, as consumers will begin to view gaming devices as “one-stop-
shop entertainment platforms” (Wolf, ).

In the thesis, we focus foremost on online gaming. Currently, relatively little AI is ap-
plied in video games. Experts note, however, that advances in game AI would fundamen-
tally change the way that games are designed, and allow the creation of entirely new types
of games. Molyneux () states that “advances will also allow players to have entirely uni-
que experiences as each time you play a given scenario it will evolve differently, and will
allow far richer, more realistic worlds to be created as more and more elements react more
believably”.

2.2 Research into game AI

In this section we provide an overview of previous research on the application of AI tech-
niques in video games. First, we discuss how game AI can contribute to the entertainment
value of a game (..). Subsequently, we discuss the AI that is typically applied in present-
day video games: non-adaptive game AI (..). Finally, we describe previous research on
what both researchers and video-game developers often aim for: adaptive game AI (..).

.. Entertainment and game AI
e purpose of a typical video game is to provide entertainment (Tozour, a; Nareyek,
). Naturally, the criteria of what makes a game entertaining may depend on who is
playing the game. e literature suggests the concept of immersion as a general measure of
entertainment (Manovich, ; Taylor, ).

Immersion is the state of consciousness where an immersant’s awareness of physical self
is diminished or lost by being surrounded in an engrossing, often artificial environment

 Molyneux, regarded as one of the world’s most brilliant and inventive game developers, has nevertheless
acquired a reputation for issuing over-enthusiastic descriptions of games under development, which are found
to be somewhat less ambitious when released.

2.2 | Research into game AI 17

(Nechvatal, ). Taylor () argues that evoking an immersed feeling with a video game
is essential for retaining a player’s interest in the game. As such, an entertaining game should
at least not repel the feeling of immersion from the player (Laursen and Nielsen, ).
Aesthetical elements of a video game, such as graphical and auditory presentation, are in-
strumental in establishing an immersive game environment. Once established, the game
environment needs to uphold some form of consistency for the player to remain immer-
sed within it (Laursen and Nielsen, ). A lack of consistency in a game results in player
immersion breakdowns (Taylor, ).

To this end, the task for game AI is to control game characters in such a way, that beha-
viour exhibited by the characters is consistent within the game environment. In a realistic
game environment, realistic character behaviour is expected. As a result, game AI that is fo-
cussed solely on exhibiting the most challenging behaviour, is not regarded as realistic. For
instance, in a first-person shooter (FPS) game it would not be realistic if characters control-
led by game AI would aim with an accuracy of one hundred per cent. Game AI for shooter
games, in practice, is designed to make intentional mistakes (Lidén, ), such as warning
the player of an opponent character’s whereabouts by intentionally missing the first shot.

For game characters to be consistent with the game environment that they are situated
in, their behaviour is often established on the basis of tricks and cheats. While it is true that
tricks and cheats may be required to uphold the consistency of the game environment, they
often are implemented only to compensate for the lack of sophistication in game AI (Buro
and Furtak, ). Despite the use of tricks and cheats, gameAI inmost complex games still
is not consistent with the game environment, and exhibits what has been called ‘artificial
stupidity’ (Schaeffer, ; Lidén, ) rather than artificial intelligence. To increase game
consistency, and thus the entertainment value of a video game, we agree with Buro and
Furtak () that researchers should foremost strive to create an optimally playing game
AI. In complex video games, such as real-time strategy (RTS) games, near-optimal game
AI is seen as the only way to obtain consistency of the game environment (Laursen and
Nielsen, ). Once near-optimal game AI is established, difficulty-scaling techniques can
be applied to downgrade the playing-strength of gameAI, to ensure that a suitable challenge
is created for the player (Spronck, a).

.. Non-adaptive game AI
Many researchers argue that the goal of game AI is to make human players believe that
opponent characters are actually controlled by other humans (Laird and Van Lent, ;
Sawyer, ; Livingstone and McGlinchey, ). To achieve this goal, game developers
typically opt for the use of proven AI techniques. e three most commonly used AI tech-
niques in video games are () decision trees, () finite state machines, and () scripting. We
give a concise description of these AI techniques below.

Decision trees: A decision tree is a model of a decision-making process. In video-game
practice, a decision tree is typically implemented as a series of if-then statements, that,
when applied to a game observation, results in the classification of that observation.
Commonly, the resulting classification is the decision to be made. Decision trees are
fast, easily implemented, and simple to understand (Millington, ).

18 Background

Finite state machines: Afinite statemachine (commonly abbreviated as FSM) is amodel of
behaviour that is composed of () a finite number of behavioural states, () transitions
between those states, and () conditions for state transition. For example, a simple
game AI may consist of the two states ‘fight’ and ‘flee’, and a parametric condition that
defines when to transit between the states. Finite state machines in present-day video
games can become fairly large, which makes them difficult to maintain (Millington,
).

Scripting: A script in a video-game environment is a sequence of expected behaviours for
a given situation. Scripts are often separated from the game engine and are written
in relatively well understandable scripting languages, such as Lua. is enables non-
programmers to implement the behaviour of game AI. However, as a consequence of
game complexity, scripts tend to be quite long and complex (Brockington and Darrah,
). Nareyek () notes that manually developed complex scripts are likely to
contain design flaws and programming mistakes.

e use of so-called non-adaptive AI techniques, such as the ones mentioned above,
may suffice to establish game AI for simple games. However, non-adaptive AI techniques,
as the name implies, do not allow the game AI to adapt to changing circumstances. ere-
fore, non-adaptive game AI is grossly inadequate to deal with the challenges presented in
complex video games, where game AI that is consistent with the game environment is re-
quired. With complex video games in mind, such as real-time strategy (RTS) games, Buro
() states four reasons as to why the current AI performance in complex games is lagging
behind the developments in related areas such as classic board games. ese four reasons
are summarised below.

. AI research for video games receives relatively little attention by game developers.
. Typical video games feature complex environments, imperfect information, and a

need for rapid decision making. Present-day AI techniques are not suitable for com-
plex video games.

. For commercial success, not all video games require good AI.
. It is difficult to set up an infrastructure for conducting AI experiments in complex

video games.

In the near future, the complexity of video games will only increase (Spronck, a).
Many researchers argue that the more complex a video game is, the greater the need for
game AI that has the ability to adapt to changing circumstances (Fairclough et al., ;
Laird and Van Lent, ; Fyfe, ). It is therefore safe to say that the necessity for game
AI with such an ability will increase accordingly.

 Buro () notes that partly because video games typically are closed-source, there is a lack of AI competition
in the field of video games, whereas in the field of classic games, the element of competition is one of the driving
forces of AI research. In the year , Buro, Aha, Sturtevant, and Corruble established an RTS game-AI
competition that now takes place on a yearly basis, prior to the AIIDE conference.

2.2 | Research into game AI 19

.. Adaptive game AI
As present-day video games present a complex and realistic environment, one would expect
characters controlled by game AI in such an environment to behave realistically (‘human-
like’). One feature of human-like behaviour of game AI, namely the ability to adapt to chan-
ging circumstances, has been explored with some success in previous research (Demasi and
Cruz, ; Graepel et al., ; Spronck et al., b). is ability is called ‘adaptive game
AI’.

When implemented successfully, adaptive game AI is able to fix errors in programmed
game AI, and to seek counter-tactics to human gameplay. Research performed by Spronck
(a) indicated that machine learning techniques may be used to establish adaptive AI in
complex video games. ere are two different approaches in which machine learning may
be applied to establish adaptive game AI, namely as () offline learning, and as () online
learning. We discuss the different approaches below.

Offline learning: Offline learning of game AI is learning that takes place while the game is
not being played by a human (Charles and McGlinchey, ; Funge, ). Learning
takes place on the basis of game observations of the gameAI () in competition against
a human, () in competition against another game AI, or () in competition against
itself (i.e., self-play). Offline learning can typically be applied in the ‘quality assurance’
phase of game development, for instance, to tune game parameters automatically, and
to create new AI behaviour automatically (Spronck, a).

Online learning: Online learning of game AI is learning that takes place while the game is
being played by a human (Charles and McGlinchey, ; Funge, ). Learning ta-
kes place on the basis of the behaviour exhibited by the human player. Online learning
can typically be applied to adapt gameAI in accordance with the human player’s expe-
rience level, playing style, strategy, or tactics. Currently, only a few games have been
released that incorporated a capability of online learning (e.g., T F  M
P and N R  S). is is attributed to the concern of game
publishers that game AI may learn inferior behaviour (Woodcock, ; Charles and
Livingstone, ). Spronck (a) expects, however, that in the near future online-
learning will be a standard element of games.

ere are two different approaches in which a machine learning technique for game
AI can be controlled, namely () human-controlled learning, and () computer-controlled
learning. We discuss the different approaches below.

Human-controlled learning: Human-controlled learning implements adaptations to the
game AI by processing immediate feedback on specific decisions that the game AI
makes. Typically, the feedback indicates whether a decision is desired or undesired

 We note that these are concepts different from ‘supervised learning’ and ‘unsupervised learning’. Learning is
supervised when both the input signals and outputs signals can be perceived. Learning is unsupervised when
the correct output signals are unknown. In video games, human-controlled learning is typically implemented
in a supervised fashion, and computer-controlled learning is typically implemented in either a supervised or
an unsupervised fashion.

20 Background

by the player. By implication, the human player controls what is being learned. e
games B  W and C are two well-known examples of games that
incorporate human-controlled learning.

Computer-controlled learning: Computer-controlled learning implements adaptations to
the game AI without requiring human intervention. Advanced computer-controlled
learning has not yet been incorporated in an actual video game. However, relatively
simple implementations of computer-controlled learning can be surprisingly effective
(Funge, ). For instance, in the gameT F M P, the difficulty of the
game AI was adapted automatically, dependent on behaviour exhibited by the human
player.

In the thesis, we focus on online, computer-controlled learning. As human beings are
able to deduce successful behaviour effectively from observations (Ross, ), our aim is to
create adaptive game AI with a similar capability. Current approaches to adaptive game AI,
however, insufficiently integratemachine learning techniques for reaching this aim in video-
game environments. Generally, these techniques require numerous learning trials, make
numerousmistakes before obtaining successful behaviour, or are computationally expensive
(Spronck, a). erefore, we will investigate a novel approach to adaptive game AI.

2.3 Chapter summary

is chapter provided background information on the research in this thesis. It introduced
the reader to the topic of video games, and gave an overview of previous research on the
application of AI techniques in video games. It discussed the need for adaptive game AI,
and distinguished two different ways in which AI techniques can be applied to establish
adaptive game AI, namely by () offline learning, and by () online learning. Additionally,
it distinguised two different ways in which adaptive game AI can be controlled, namely by
() human-controlled learning, and by () computer-controlled learning. e focus of this
thesis is on online, computer-controlled learning that is capable of adapting rapidly and
reliably game AI.

3
Incremental adaptive game AI

In recent years, video-game developers have emphasised the importance of high-quality
game AI. When implementing game AI, even state-of-the-art games resort mainly to
long-time proven rule-based techniques, such as expert systems and finite state machines
(Spronck, a). ese techniques are prone to introducing errors in the game AI (Broc-
kington and Darrah, ), and lack the capability of adaptive behaviour (Manslow, ).
Game AI with the capability of adaptive behaviour is, if present, predominantly implemen-
ted via a so-called incremental approach.

Chapter  focusses on incremental adaptive game AI. In the chapter we first define in-
cremental adaptive game AI (Section .). Subsequently, we experiment with a mechanism
that implements incremental adaptive game AI (Section .). en, we experiment with an
extension of the mechanism, in which we incorporate an increased focus on exploiting re-
cent game observations (Section .). Next, we give an analysis of the practical applicability
of incremental adaptive game AI (Section .). Finally, we present the chapter conclusions
(Section .).

is chapter is based on the following four publications.
) Bakkes, S. C. J., Spronck, P. H. M., and Postma, E. O. (). TEAM: e Team-oriented Evolutionary

Adaptability Mechanism. In Rauterberg, M., editor, Entertainment Computing - ICEC , volume 
of Lecture Notes in Computer Science, pages –. Springer-Verlag, Heidelberg, Germany.

) Bakkes, S. C. J., Spronck, P. H. M., and Postma, E. O. (a). Best-response learning of team behaviour
in Quake III. In Aha, D. W., Muñoz-Avila, H., and Van Lent, M., editors, Proceedings of the IJCAI 
Workshop on Reasoning, Representation, and Learning in Computer Games, pages –. Navy Center for
Applied Research in Artificial Intelligence, Washington, DC., USA.

) Bakkes, S. C. J., Spronck, P. H.M., and Van den Herik, H. J. (b). Learning to play as a team. InWanders,
A., editor, Proceedings of the Learning Solutions  symposium, pages –. SNN Adaptive Intelligence,
Nijmegen, e Netherlands.

) Bakkes, S. C. J. and Spronck, P. H. M. (). Symbiotic learning in commercial computer games. InMehdi,
Q. H., Gough, N. E., and Natkin, S., editors, Proceedings of the th International Conference on Computer
Games (CGAMES ), pages –. University of Wolverhampton, Wolverhampton, UK.

22 Incremental adaptive game AI

3.1 What is incremental adaptive game AI?

We define incremental adaptive game AI as an approach to game AI where the adaptive
capability is provided by incremental techniques. e approach, illustrated in Figure .,
implements a direct feedback loop for control of characters that are operating in a game
environment. e behaviour of a game character is determined by the game AI. Each game
character feeds the game AI with data on its current situation, and with the observed results
of its actions. e game AI adapts by processing the observed results, and generates actions
in response to the character’s current situation. An adaptation mechanism is incorporated
to determinewhat the best way is to adapt the gameAI. For instance, reinforcement learning
may be applied to assign rewards and penalties to certain behaviour determined by the game
AI.

Typically, incremental adaptive game AI will be implemented for performing adapta-
tion of the game AI in an online and computer-controlled fashion. Improved behaviour is
established by continuously making (small) adaptations to the game AI. Incremental adap-
tive game AI in such an implementation can be characterised by its scheme for incremental
adaptation. is scheme can be summarised as follows.

Incremental adaptation: To adapt to circumstances in the current game, the adaptation
process is based only on observations of the current game. Naturally, a bias in the
adaptation process may be included based on domain knowledge of the experimen-
ter. In addition, to ensure that AI is effective from the onset of a game, it is common
practice to initialise adaptive game AI with long-time proven behaviour.

Online adaptation via an incremental approach may be used to improve significantly
the quality of game AI by endowing it with the capability of adapting its behaviour while
the game is in progress. e approach has been applied successfully to simple video games
(Demasi and Cruz, ; Johnson, ) and to complex video games (Spronck et al., ).
However, to our knowledge advanced online adaptation has never been used in a commer-
cially released video game.

Figure .: Incremental adaptive game AI (see text for details).

3.2 | Incremental adaptive game AI with TEAM 23

3.2 Incremental adaptive game AI with TEAM

In this section we report on an experiment to investigate how incremental adaptive game
AI can be used effectively in an actual video game. We present an approach to incremental
adaptive game AI that we named TEAM. TEAM stands for Tactics Evolutionary Adaptabi-
lity Mechanism. It is a mechanism to establish adaptive AI for team behaviour.

e remainder of the section is organised as follows. We first discuss team AI (..).
Second, we present the TEAM mechanism (..). ird, we discuss an experiment that
tests TEAM in an actual video game (..). Finally, we end the section by a discussion of
the experimental results (..).

.. Team AI
We define team AI as the behaviour of a team of computer-controlled opponents that com-
petes with other teams within a video-game environment. We note that in the domain of
video games, a computer-controlled opponent is often referred to as a ‘non-player charac-
ter’ (NPC).

Team AI consists of three components: () the AI of individual NPCs, () a means of
communication, and () the organisation of the team. We concisely discuss each of these
three components below.

AI of individual NPCs: eAI of individualNPCs is, as the name implies, theAI of anNPC
which controls the NPC’s behaviour. Typically, the AI of an NPC controls relatively
low-level AI behaviour, such as pathfinding and aiming. e AI of individual NPCs is
game-specific.

Communication: Coordinated behaviour in a team requires communication. In typical im-
plementations of teamAI, NPCs pass alongmessages containing information or com-
mands. e information can be used to compute tactics and distribute commands
amongst the team members. An implementation of the communication component
can often be generalised to other games.

Organisation: A form of internal organisation is required to establish team cohesion. Two
distinctive approaches to organising a team are: () a decentralised approach, and ()
a centralised approach. An implementation of the organisation component can often
be generalised to other games.
e decentralised approach is an extension of the AI of individual NPCs. In the de-
centralised approach, NPCs operate in a non-hierarchical communication structure.
Team behaviour emerges through the combined interaction of all NPCs. Figure .
(left) is an illustration of a decentralised team of NPCs.

e centralised approach, schematically displayed in Figure . (right), is strictly hier-
archical and is specifically designed to create and maintain well-organised team co-
hesion. In this approach, the process of decision-making is centralised. Typically, a
centralised decision-makingmechanism () observes NPCs, () makes a decision, and

24 Incremental adaptive game AI

Figure .: Decentralised organisation (left) and centralised organisation (right) (Van der Sterren,
).

() processes the decision into NPC commands. We note that it resembles the OODA
loop for modelling military decision making (Boyd, ). e implementation of the
centralisedmechanism varies in style fromauthoritarian (which focusses on teamper-
formance by forcing NPCs to perform commands), to coaching (which advises, rather
than forces NPCs).

.. e TEAM adaptation mechanism
To establish adaptive team AI, an adaptation mechanism is needed as an additional compo-
nent. An adaptation mechanism for team AI in video games does not yet exist. We decided
to design and implement an adaptation mechanism for team AI. Game AI of the popular vi-
deo game Q III Capture e Flag (CTF) (Van Waveren and Rothkrantz, ), is used
for illustrative purposes. Q III CTF is a first-person shooter action game. An exten-
sive description of Q III CTF is provided in Appendix A.. e game environment is
illustrated in Figure .. e proposed adaptation mechanism is discussed next.

e Tactics Evolutionary Adaptability Mechanism (TEAM) is an evolutionary inspired
adaptation mechanism. We first discuss (A) the concept of TEAM. Subsequently, we dis-
cuss four notable features of TEAM. ese four features are: (B) a centralised NPC control
mechanism evolution, (C) a symbiotic evolution, (D) a delayed FSM-based evaluation, and
(E) an evolution with history fall-back. We assume homogeneous NPCs.

A. Concept of TEAM

TEAM is designed to be a generic adaptationmechanism for team-oriented games in which
the game state can be represented as a finite state machine (FSM). An instance of TEAM is
created for each state of the FSM. Each instance is an evolutionary algorithm which learns
state-specific behaviour for a team as a whole. For our experiment in Q III CTF, the
evolutionary algorithm was designed to learn optimal team behaviour for each state of the
FSM. Particular team behaviour is expressed by a limited set of parameter values.

3.2 | Incremental adaptive game AI with TEAM 25

Figure .: Screenshot of the Q III CTF game environment. In the screenshot, two NPCs are
engaged in combat.

Cooperatively, all instances of TEAM learn successful team-oriented behaviour for all
states of a game. We consider the game Q III CTF to have four states (see Appen-
dix A.). e concept of TEAM is illustrated in Figure ..

B. Centralised NPC control mechanism evolution

TEAMevolves theNPC controlmechanism in a centralised fashion.e choice for centrali-
sed control is motivated by the desire to evolve directly the behaviour for a team as a whole.
e performance of a team’s behaviour is assessed by performing a high-level evaluation of
the whole team.

C. Symbiotic evolution

e evolutionary approach of TEAM is inspired by symbiotic animal communities (Raven
and Johnson, ). In such communities, individuals postpone short-term individual goals
in favour of long-term community goals.

e focus of TEAM’s evolutionary mechanism lies on learning team-oriented behavi-
our by the cooperation of multiple evolutionary algorithms. For each state of the FSM that
controls the team-oriented behaviour, a separate evolutionary algorithm is used. Each of
these evolutionary algorithms learns relatively uncomplicated team-oriented behaviour for
the specific state only. Still, the behaviour is learned in consideration of the long-term ef-
fects on the other evolutionary algorithms. As a result, relatively complex team-oriented
behaviour emerges in a computationally fast fashion.

26 Incremental adaptive game AI

Figure .: Conceptually, TEAM learns adaptive behaviour for a team as a whole (rather than learning
adaptive behaviour for each individual). Instances of TEAM cooperatively learn team-
oriented behaviour, which is defined as the combination of the local optima for the states
(in this example there are four states).

D. Delayed FSM-based evaluation

For evaluating the behaviour that is learned by the evolutionary algorithms, we defined a
delayed FSM-based evaluation function. e function postpones the determination of the
fitness value of a genome until a predetermined number of state transitions (the so-called
“depth”) have been processed after employing the particular genome. e delayed FSM-
based evaluation function consists of two components: () a scaled fitness function Fsi, and
() a delayed fitness function Fd.

e scaled fitness function is defined as:

Fsi =


1.0−min

(√
ti−

√
ti/3

10 , 1.0

)
{desirable transition}

min

(√
ti−

√
ti/3

10 , 1.0

)
{undesirable transition}

(.)

where ti denotes the time elapsed between state transitions at depth i, and where the type
of transition is calculated by using annotations on the FSM which describes the states of a
game. Preliminary experiments and knowledge of the game led to this function. e square
roots in the function are used to the effect of emphasising relatively short state transitions,
and clearing relatively long state transitions. In Figure ., the used annotations on the FSM
of Q III CTF is given.

e delayed fitness function for a state transition is defined as:

Fd =

n∑
i=0

1

i+ 1
(Fsi) (.)

3.2 | Incremental adaptive game AI with TEAM 27

Figure .: Annotated finite state machine of Q III CTF. Desirable state transitions are denoted
by “+”, and undesirable state transitions are denoted by “−”.

where i is the depth, n is a positive integer, and Fsi is the scaled fitness value of a genome at
depth i. e delayed reward is used to consider the long-term effects of genomes, because
seemingly desirable behaviour is only desirable if the team can either retain or improve on
the behaviour. In our experiment a delayed reward of n = 2 is used.

E. Evolution with history fall-back

e game environment of team-oriented games is typically accompanied by a large amount
of randomness. e randomness poses a challenge for most adaptation mechanisms since
one cannot be sure that a successful course of the evolution is the direct result of () a
high quality of genetic information in the population, or of () lucky circumstances. Conse-
quently, we designed the evolutionarymechanism of TEAM so that it is capable of reverting
to an earlier population. is so-called history fall-back is implemented by continuously re-
calculating fitness values, in order to filter out unsuccessful genomes in due time.

.. TEAM vs. Quake III CTF team AI
To assess the performance of the TEAM mechanism, we incorporated it in the
Q III CTF game. We performed an experiment in which an adaptive team (control-
led by TEAM) is pitted against a non-adaptive team (controlled by the original team AI of
Q III CTF). In the experiment, the TEAM mechanism adapts the tactical behaviour of

28 Incremental adaptive game AI

a team to the opponent. A tactic consists of a small number of parameters which represent
the offensive and defensive division of roles of NPCs that operate in the game. e inherent
randomness in the Q III CTF environment requires the adaptation mechanism to be
able to adapt successfully to significant behavioural changes of the opponent.

In the remainder of this subsection, we subsequently give (A) the experimental setup,
(B) the performance assessment, (C) the obtained results, and (D) an analysis of the results.

A. Experimental setup

In our experiment, an experimental run consists of two teams playing Q III CTF until
the game is interrupted by the experimenter. One team is controlled by TEAM, the other
team is controlled by the Q III CTF team AI, which offers non-static and fine-tuned,
but non-adaptive behaviour. On average, the game is interrupted after three hours of game-
play. Here we remark that typical Q III CTF games require considerably less time to
finish. We perform fifteen experimental runs with the TEAM mechanism.

Both competing teams consist of fourNPCswith identical individual AI, identicalmeans
of communication, and an identical organisation of the team. e teams only differ in the
control mechanism employed (adaptive or non-adaptive). We note that the Q III CTF
team AI switches intelligently its behaviour; the moment of switching depends on whether
the AI is winning or losing the game. us, adaptive team AI in competition against this
opponent has to be able to deal with significant behavioural changes.

B. Performance assessment

To quantify the performance of TEAM in competition with the opponent AI, two properties
of an experimental run are used: () the absolute turning point, and () the relative turning
point.

We define the absolute turning point as the time at which the adaptive team obtains a
win-loss ratio of a least  wins against  losses in a sliding window of . When the ratio
is reached, the probability of the adaptive team outperforming the non-adaptive team is
greater than  (cf. randomisation test, Cohen, ).

We define the relative turning point, which quantifies the noticeable effect of successful
adaptive behaviour, as the last time at which the adaptive team has a zero lead with respect
to the non-adaptive team, with the requirement that from thismoment on the adaptive team
does not lose its lead for the rest of the experimental run. e lead of the adaptive team is
defined as the score of the adaptive team minus the score of the non-adaptive team.

C. Results

InTable . an overviewof the experimental results is given.emean absolute turning point
acquired is , and the mean relative turning point is . TEAM requires several dozens of
trials to evolve excellent behaviour. is is a good result, considering that evolutionary al-
gorithms typically require several thousands of trials to evolve effective behaviour.

To illustrate the course of a typical experimental run, we plotted the absolute and relative
performance in Figure .. As shown in the top graph of Figure . (absolute performance),

3.2 | Incremental adaptive game AI with TEAM 29

Absolute turning point Relative turning point

Mean  
StDev  

Median  
Minimum  
Maximum  

Table .: Summary of experimental results obtained by TEAM. ey are average results over fifteen
experimental runs with the TEAM mechanism.

initially, that is after the sliding window of , the adaptive team obtains approximately 
wins against  losses; this is considered to be neutral performance. At the absolute turning
point (i.e.,  in the figure) a drastic increase of the performance of the adaptive team is
observed. In the bottom graph of Figure . (relative performance), we observe that, initially,
the adaptive team obtains a lead of approximately zero. At the relative turning point (i.e., 
in the figure) the lead of the adaptive team increases substantially.

D. Analysis of the results

e obtained experimental results reveal that TEAM is able to counter successfully non-
static opponent behaviour, as it defeated the non-static Q III CTF team AI. In Subsec-
tion ..wewill discuss that this is the result of TEAMdiscovering and applying unforeseen
dominant tactics.

Table . shows that the mean relative turning point is much below the mean absolute
turning point. From this observation wemay conclude that before we can reliably determine
whether the absolute turning point is reached, the opponent is already subject to the domi-
nant effect of TEAM. Figure . reveals that TEAM learned to outperform the opponent
without any substantial degradation in the lead of the adaptive team.

Considering that in all runswewere able to obtain relatively low turning points, implying
that TEAM learned to outperform the opponent (in this case the Q III CTF team AI),
we may draw the conclusion that TEAM is capable of adapting successfully to significant
changes in the opponent behaviour.

.. Discussion of TEAM

Results of the experiment performed in Q III CTF indicate that TEAM is a successful
adaptation mechanism for team-oriented behaviour. In this subsection we will first provide
(A) a qualitative evaluation of TEAM. Subsequently, we discuss (B) the behaviour learned
by TEAM. en, we draw (C) the experimental conclusions. Finally, suggestions are given
for (D) broadening the application domain of TEAM.

30 Incremental adaptive game AI

Figure .: Illustration of typical experimental results obtained by TEAM. e top graph shows the
points scored by the adaptive team over a sliding window of  as a function of the amount
of scored points. e bottom graph shows the lead of the adaptive team over the non-
adaptive team as a function of the amount of scored points. e bottom graph reveals that
the adaptive teamoutperforms the non-adaptive teamwithout any substantial degradation
in the lead of the adaptive team.

3.2 | Incremental adaptive game AI with TEAM 31

A. Qualitative evaluation of TEAM

TEAM is an online adaptation mechanism. For online adaptation to be applied in practice,
we denote four requirements for qualitatively acceptable performance. It must be () com-
putationally fast, () robust with respect to randomness inherent to the environment, ()
efficient with respect to the number of adaptation trials, and () effective with respect to the
intermediate AI generated during the adaptation phase (Spronck et al., b).

TEAM is computationally fast in a sense that it only needs to return a single genome
to the application and update a small population after each state transition. In addition,
TEAM is robust in a sense it is able to cope with a large amount of randomness inherent
in the environment. As reasoned in Subsection .., TEAM is efficient with respect to the
limited number of trials required for an opponent to be subject to the effects of dominant
adaptive behaviour. e effectiveness of TEAM is expressed by the fact that it outperforms
non-adaptive AI without any substantial degradation the lead of the adaptive team. We may
therefore conclude that TEAM is computationally fast, robust, efficient, and effective, and
may be applied in practice in the examined first-person shooter game.

B. Learned behaviour

Analysing the behaviour of TEAM, we observed that the learned behaviour does not con-
verge to merely one set of dominant tactics. TEAM is continuously adapting to the environ-
ment in order to remain dominant throughout the game. In our experiment, the adaptive
team has learned relatively risky, yet successful tactics. ese tactics can be best described
as ‘rush’ tactics, which are often applied in real-time strategy (RTS) games. Rush tactics are
tactics aimed at rapidly obtaining field supremacy. If rush tactics are successful, the oppo-
nent can seldom recover from the momentum of the attacking team.

e original Q III CTF team AI uses only moderate tactics in all states. erefore,
it is not able to counter significant field supremacy. is exemplifies the inadequacy of non-
adaptive AI. Despite the fact that the original Q III CTF team AI is fine-tuned to be
suitable for typical situations, it cannot adapt to superior player tactics, whereas TEAM can.

C. Experimental conclusions

From the results of the experiment performed in Q III CTF, we may draw the conclu-
sion that TEAM is capable of adapting successfully to changes in the opponent behaviour.
TEAM adapted the team behaviour in such a way that dominant tactics were discovered.
ese dominant tactics outperformed the tactics of the original Q III CTF team AI,
which exhibits non-adaptive behaviour.erefore, wemay conclude that by creating a team-
oriented mechanism capable of automated and intelligent adaptation to the environment,
we established a solid basis for adaptive teamAI for the examined first-person shooter game.

D. Broadening the application domain of TEAM

Of the four requirements for qualitatively acceptable performance set by Spronck (a),
the requirement of efficiency is of main relevance for enhancing an adaptation mechanism

32 Incremental adaptive game AI

for video games. Here, efficiency is defined as the learning time of the mechanism. In adap-
tive game AI, efficiency depends on the number of learning trials needed to adopt effective
behaviour. Occasionally, we observed that the TEAM mechanism required over two hours
of real-time play to outperform the opponent. In the case of Q III CTF, matches take
on average half an hour. Due to the large variation in the time that is needed to learn the
appropriate tactics, the application of TEAM is therefore limited.

To broaden the application domain of TEAM, its efficiency needs to be enhanced. is
will be discussed in the next section.

3.3 Incremental adaptive game AI with TEAM2

e TEAM mechanism is an extension of the previously explored TEAM mechanism for
team-oriented adaptive behaviour. It focusses on the exploitation of recent game observati-
ons. Our experiment with TEAM revealed that the mechanism is applicable to first-person
shooter video games, such as Q III CTF. However, the applicability of TEAM is limited
due to the large variation in the time that is needed to learn the appropriate tactics.

is section describes our attempts to improve the efficiency of the TEAM mechanism
by using implicit opponentmodels (seeVan denHerik et al., ).We propose an extension
of TEAM called TEAM. e TEAM mechanism employs a data set of a limited history
of results of tactical team behaviour. Observations gathered in the data set constitute an
implicit opponent model, on which a best-response strategy (cf. Carmel and Markovitch,
) is formulated. We will show that best-response learning of team-oriented behaviour
can be applied in an actual video game, and investigate to what extent it is suitable for online
learning.

In the remainder of this section, we first discuss the TEAM mechanism (..). Sub-
sequently, we report on an experiment that tests the mechanism in play against the origi-
nal Q III CTF team AI (..). Finally, we provide a discussion of the obtained results
(..).

.. e TEAM adaptation mechanism
We established an enhanced design for online learning of team-oriented behaviour, named
TEAM. e four features of the enhanced design are as follows: () a symbiotic learning
concept, () a state-transition-based fitness function, () learning a best-response team stra-
tegy, and () a scaled roulette-wheel selection. Both the symbiotic learning concept as well
as the state-transition-based fitness function are the same as applied in TEAM. Below we
discuss our approach to (A) learning a best-response team strategy, and the applied (B) sca-
led roulette-wheel selection. e popular Q III CTF game, is again used for illustrative
purposes.

 Since TEAM is not inspired by evolutionary algorithms, we let the reader imagine that the letter ‘E’ is an
abbreviation for ‘Exploitative’ (instead of ‘Evolutionary’).

3.3 | Incremental adaptive game AI with TEAM2 33

Team configuration History Fitness

(,,) [.,.,...,.] .
(,,) [.,.,...,.] .

...
...

...
(,,) [.,.,...,.] .

Table .: Example of an implicit opponent model for a specific state of the Q III CTF game.

A. Learning a best-response team strategy

Adaptation to the opponent takes place via an implicit opponent model, which is built
and updated when the team game is in progress. Per state of the game (i.e., four in
Q III CTF), data is sampled that merely concerns a specific state and represents all
possible team configurations for that particular state. e implicit opponent model consists
of historic data of results per team configuration per state. An example of the structure of an
implicit opponent model is given in Table .. In the example, the team configuration repre-
sents the role division of a team with four members, each of which has either an offensive,
a defensive, or a roaming role. e history can be anything ranging from a store of fitness
values to a complex data structure.

On this basis, a best-response strategy is formulated when the game transits from one
state to another. For reasons of efficiency and relevance, only relatively recent historic data
are used for the learning process.

B. Scaled roulette-wheel selection

e best-response learning mechanism selects the preferred team configuration by imple-
menting a roulette-wheel method (Nolfi and Floreano, ), where () each slot of the rou-
lette wheel corresponds to a team configuration in the state-specific solution space, and ()
the size of the slot is proportional to the obtained fitness value of the team configuration.
e selection mechanism quadratically scales the fitness values to select the higher-ranking
team configurations more often, considering that behaviour exhibited by the team AI must
be non-degrading. In acknowledgement of the inherent randomness of a game environ-
ment, the scaled roulette-wheel selection mechanism averts selecting inferior top-ranking
team configurations.

.. TEAM vs. QUAKE III CTF team AI
To assess the performance of the TEAM mechanism, we incorporated it in the
Q III CTF game. We repeated the original experiment with the TEAM mechanism,
by pitting an adaptive team (now controlled by TEAM) against a non-adaptive team (con-
trolled by the Q III CTF team AI). In the experiment, the TEAM mechanism adapts
the tactical behaviour of a team to the opponent. e results obtained by TEAM will be
compared to those obtained by the TEAM mechanism. e experimental setup is identical

34 Incremental adaptive game AI

TEAM TEAM

Experimental runs  
Outliers  
Outliers (%) % %

Mean . .
StDev . .

Median  
Minimum  
Maximum  

Table .: Summary of experimental results. With TEAM the median performance has improved
substantially, yet, outliers have a negative effect on the mean performance.

to that of the experiment with the TEAM mechanism (see Subsection ..). On average,
the game is interrupted after two hours of gameplay; the original TEAM mechanism ty-
pically requires two hours to learn successful behaviour, whereas the TEAM mechanism
should perform more efficiently. We perform twenty experimental runs with the TEAM
mechanism.

e performance assessment is comparable to that of the experiment with the TEAM
mechanism. To investigate the efficiency of the TEAM mechanism, we defined two per-
formance indicators: () the median relative turning point, and () the mean relative turning
point. e choice for the two indicators is motivated by the observation that the amount of
variance influences the learning performance of the mechanism. To investigate the variance
of the experimental results, we defined an outlier as an experimental runwhich neededmore
than  time steps to acquire the turning point (the equivalent of two hours of gameplay).

In the remainder of this subsection, we subsequently give (A) the obtained results, and
(B) an analysis of the results.

A. Results

In Table . an overview of the experimental results of the TEAM experiment is given. It
should be noted that in two tests, the run was prematurely interrupted without a turning
point being reached. We incorporated these two tests as having a turning as high as the
highest outlier, which is . e experimental results indicate that, should the runs not be
prematurely interrupted, their turning points would have been no more than half of this
value.

e median turning point acquired is , which is substantially lower than the median
turning point of the TEAM mechanism, which is . e mean turning point acquired
by TEAM, however, is substantially higher than the mean turning point acquired by the
TEAM mechanism ( and , respectively). e percentage of outliers in the total num-
ber of tests is equal by approximation. However, the range of the outliers, expressed by the
measured minimum and maximum turning points, has increased considerably for TEAM.

3.3 | Incremental adaptive game AI with TEAM2 35

Figure .: Illustration of typical experimental results obtained by the TEAM mechanism. e graph
shows the lead of the adaptive teamover the non-adaptive team as a function of the number
of scored points.

To illustrate the course of an experimental run, we plotted the performance for a typical
run in Figure .. e performance is expressed in terms of the lead of the adaptive team,
which is defined as the score of the adaptive teamminus the score of the non-adaptive team.
e graph shows that, initially, the adaptive team attains a lead of approximately zero. At the
turning point (i.e.,  in Figure ., as compared to  in Figure .), the adaptive team takes
the lead over the non-adaptive team. Additionally, the graph reveals that the adaptive team
outperforms the non-adaptive team without any substantial degradation in the lead of the
adaptive team.

B. Analysis of the results

e experimental results indicate that TEAM is able to adapt successfully the behaviour
of team AI in a highly non-deterministic environment, as it challenged and defeated the
fine-tuned Q III CTF team AI.

e results listed in Table . show that the TEAMmechanism outperforms the TEAM
mechanism in terms of themedian turning point. However, themean turning point is larger
for TEAM than for TEAM, which is explained by the increased range of the outliers. e
median turning point indicates that the TEAM best-response learning mechanism is more
efficient than the TEAM online evolutionary learning mechanism, as the adaptation to suc-
cessful behaviour progresses more swiftly than before; expressed in time only forty-eight
minutes are required (as compared to sixty-nine minutes).

36 Incremental adaptive game AI

On the basis of the obtained increase in efficiency, we may draw the conclusion that
the TEAM mechanism broadens the application domain of the TEAM mechanism for the
purpose of rapid learning in the examined first-person shooter game. A discussion of the
experimental results is given next.

.. Discussion of TEAM
Our experimental results show that the TEAM mechanism succeeded in enhancing the
learning performance of the TEAM mechanism with regard to its median performance, but
not to itsmean performance. In this subsection, we first give (A) a comparison of the learned
behaviour of both mechanisms. Subsequently, we discuss (B) the exploitation versus explo-
ration dilemma for online learning in a video-game environment. We end the subsection by
drawing (C) experimental conclusions.

A. Comparison of the behaviour learned by TEAM and TEAM

In the original TEAM experiment we observed that the adaptive teamwould learn so-called
‘rush’ tactics. Rush tactics aim at quickly obtaining offensive field supremacy. We noted that
the original Q III CTF team AI, as it was designed by the developers of the game, uses
only moderate tactics in all states, and therefore, it is not able to counter significant field
supremacy.

e TEAM mechanism is inclined to learn rush tactics as well. Notably, the experi-
ment showed that if the adaptive team uses tactics that are slightly more offensive than the
non-adaptive team, it is already able to outperform the opponent. Besides the fact that the
original Q III CTF teamAI cannot adapt to superior player tactics (whereas an adapta-
tionmechanism can), it is not sufficiently fine-tuned; it implements a seemingly obvious and
easily detectable local optimum.

B. Exploitation versus exploration

e experimental results revealed that the exploitative TEAM mechanism obtained a sub-
stantial difference between the median performance (which was relatively low) and mean
performance (which was relatively high), whereas the original, less exploitative, TEAM me-
chanism obtained a moderate difference between the median and mean performance.

An analysis of the phenomenon revealed that it is due to a well-known dilemma in ma-
chine learning: the exploitation versus exploration dilemma (Carmel andMarkovitch, ).
is dilemma entails that a learning mechanism requires the exploration of derived results
to yield successful behaviour in the future, whereas at the same time the mechanism needs
to exploit directly the derived results to yield successful behaviour in the present. Acknow-
ledging the need for an enhanced efficiency, the emphasis of the TEAM mechanism lies
on exploiting the data represented in a small amount of samples. Performance histograms
of results obtained by TEAM and TEAM are given in Figure ..

In the highly non-deterministic Q III CTF environment, a long series of fitness
values may occur that, due to chance, is not representative for the quality of the tactic em-
ployed. Indeed, this problem results from the emphasis on exploiting the small samples ta-

3.3 | Incremental adaptive game AI with TEAM2 37

Performance histogram of TEAM

0

1

2

3

4

5

6

7

8

9

10

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375
Category

Tu
rn

in
g

po
in

ts

Performance histogram of TEAM2

0

1

2

3

4

5

6

7

8

9

10

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375
Category

Tu
rn

in
g

po
in

ts

Figure .: Histograms of the results of both the TEAM and TEAM experiment. e graphs show
the number of turning points as a function of the value of the turning point, grouped by a
category value of .

38 Incremental adaptive game AI

ken from the distribution of all states. To increase the number of samples, an exploration
mechanism can be added. e TEAM online evolutionary learning mechanism employed
such an exploration mechanism by propagating fitness values, which led to loss of effici-
ency. We tested several exploration mechanisms in TEAM, which we found also led to loss
of efficiency. However, since it is impossible to rule out chance runs completely, an online
learning mechanism must be balanced between an exploitative and explorative emphasis.

C. Experimental conclusions

From the results of the experiment performed in Q III CTF, we may draw the con-
clusion that the TEAM best-response learning mechanism succeeded in enhancing the
median learning performance, but not the mean learning performance. is reveals that,
in the current experimental setup, the exploitation and exploration are not sufficiently well
balanced to allow efficient and effective online learning in the Q III CTF game. As
the TEAM mechanism is easily able to defeat a non-adaptive opponent, we may therefore
conclude that the mechanism is suitable for online learning in an actual game if a balance
between exploitation and exploration is found for that specific game.Moreover, the TEAM
mechanism can be used during game-development practice to validate and produce game
AI automatically.

3.4 Practical applicability

In this section we give an analysis of the practical applicability of incremental adaptive game
AI. Following an incremental approach to adaptive gameAI, in the two previously discussed
experiments we established the TEAM and TEAM mechanisms for online adaptation of
game AI. We compared the performance of the TEAM mechanism with that of the ori-
ginal TEAM mechanism operating in the actual video game Q III CTF. e obtained
results showed that the TEAM mechanism could more efficiently learn effective team be-
haviour. Still, we observed that the application as an online learning mechanism is limited
due to occasionally very long learning times that result from an improper balance between
exploitation and exploration. From these results we concluded that the TEAM mechanism
is suitable for online learning in an actual game if a balance between exploitation and explo-
ration is found for that specific game.

However, establishing an effective balance between exploitation and exploration is ham-
pered by the fact that in an incremental approach to adaptive AI, this would require either
() a high quality of the domain knowledge used (which generally is unavailable to the AI),
or () a large number of trials to learn effective behaviour online (which is highly undesira-
ble in an actual video game). Naturally, going through a large number of adaptation trials
does not coincide with our goal of adapting rapidly (and by extension reliably) game AI. As
a result, one can only increase the applicability of game AI that is established by following
an incremental approach, by improving the quality of the domain knowledge that is exploi-
ted. Spronck (a) argues that machine learning techniques may be applied in an offline
fashion, to improve the quality of domain knowledge after a game has been played. Howe-
ver, research into offline improvements of domain knowledge, though important, is strictly

3.5 | Chapter conclusions 39

domain specific, i.e., results achieved are only applicable in one particular video game. For
instance, research by Ponsen et al. () showed that offline improvements in the quality
of the domain knowledge may indeed lead to more effective play in the W game. Still,
offline improvements are typically achieved on the basis of self-play, or on the basis of play
against other game AIs. us, offline improvements will generally not reflect the knowledge
that is required in actual game-playing conditions, i.e., in online play against human oppo-
nents. As a result, numerous learning trials will still be required for online adaptation of the
game AI.

Considering the previous discussion, it is clear that incremental adaptive game AI can
be applied successfully to some extent, but not to the extent that it can be used to adapt
game AI rapidly and reliably in an online fashion. For rapid and reliable online adaptation
of game AI, it therefore is necessary that an alternative is established for the incremental
adaptive game AI approach. Our proposal for an alternative approach will be the focus of
the chapters that follow.

3.5 Chapter conclusions

is chapter discussed an approach that is commonly applied to create adaptive game AI,
i.e., incremental adaptive game AI. Following the approach, we established the TEAM and
TEAM mechanism for online adaptation of game AI. We tested TEAM and TEAM in
the actual first-person shooter game Q III CTF, and from our experimental results
we concluded that the mechanisms are capable of adapting successfully to changes in the
opponent behaviour. However, application of TEAM and TEAM as an online learning me-
chanismwas hampered by occasionally very long learning times due to an improper balance
between exploitation and exploration.We discussed that this issue characteristically follows
from the incremental adaptive game AI approach, which requires either () a high quality of
the domain knowledge used (which generally is unavailable to the AI), or () a large number
of trials to learn effective behaviour online (which is highly undesirable in an actual video
game). us, from the results of this chapter we may conclude that the characteristics of
incremental adaptive game AI prohibit our goal of establishing game AI capable of adapting
rapidly and reliably to game circumstances. erefore, we propose to investigate an alterna-
tive approach to adaptive AI that comes without these characteristics.

4
Case-based adaptive game AI

In this chapter we propose an alternative, novel approach to adaptive game AI that comes
without the hampering characteristics of incremental adaptive game AI. e approach is
coined ‘case-based adaptive game AI’.

Chapter  is organised as follows. We first outline case-based adaptive game AI (Sec-
tion .). Subsequently, we perform two experiments to obtain an early indication of the
effectiveness of case-based adaptive game AI. In the first experiment, we test a limited form
of case-based adaptive game AI in an actual video game (Section .). In the second experi-
ment, we test case-based adaptive game AI in a limited, simulated video-game environment
(Section .). Next, we describe how to establish case-based adaptive gameAI in actual video
games (Section .). Finally, we provide a summary of the chapter (Section .).

4.1 What is case-based adaptive game AI?

is section outlines our approach to adaptive game AI. First, we describe case-based rea-
soning, by which our approach is inspired (..). Subsequently, we define the approach,
which we coined ‘case-based adaptive game AI’ (..). en, we discuss the contributions
and limitations of the approach (..).

is chapter is based on the following two publications.
) Bakkes, S. C. J. and Spronck, P. H. M. (). Gathering and utilising domain knowledge in commercial

computer games. In Schobbens, P.-Y., Vanhoof, W., and Schwanen, G., editors, Proceedings of the th
Belgium-Netherlands Conference on Artificial Intelligence (BNAIC ), pages –. University of Namur,
Namur, Belgium.

) Van der Blom, L. L., Bakkes, S. C. J., and Spronck, P. H. M. (). Map-adaptive artificial intelligence for
video games. In Roccetti, M., editor, Proceedings of the th International Conference on Intelligent Games
and Simulation (GAMEON’), pages –. EUROSIS-ETI, Ghent University, Ghent, Belgium.

42 Case-based adaptive game AI

Figure .: e case-based reasoning cycle. Adapted from Aamodt and Plaza ().

.. Case-based reasoning
For establishing adaptive game AI, we draw inspiration from case-based reasoning (Kolod-
ner, ; Aamodt and Plaza, ; Leake, ; Lopez de Mantaras et al., ). Case-based
reasoning (CBR) is a methodology (Watson, ) for interpretation and problem solving
based on the explicit storage and reuse of experiences (or their generalisations). An obser-
vation on which problem solving is based in CBR, namely that similar problems have similar
solutions (e.g., Leake and Wilson, ), has been shown to hold in expectation for simple
scenarios (Faltings, ), and is empirically validated inmany real-world domains (Lopez de
Mantaras et al., ).

Conceptually case-based reasoning is commonly described by theCBR-cycle (illustrated
in Figure .).is cycle comprises four stages: Retrieve, Reuse, Revise, and Retain. Ontañón
et al. () describe the stages as follows. In theRetrieve stage, the system selects a subset of
cases from the case base that are relevant to the current problem.eReuse stage adapts the
solution of the cases selected in the retrieve stage to the current problem. In the Revise stage,
the obtained solution is verified (either by testing it in the real world or by examination by
an expert), which provides feedback about the correctness of the predicted solution. Finally,
in the Retain stage, the system decides whether or not to store the newly solved case into
the case base.

For adaptive game AI, we desire to generate character behaviour and player models au-
tomatically, readily fitted to circumstances in actual, online play, on the basis of previous
gameplay experiences. Case-based reasoning provides an strong starting point for realising
this desire in the form of a proof of concept.

.. Approach
We define case-based adaptive game AI as a CBR-inspired approach to game AI where do-
main knowledge is gathered automatically by the game AI, and is immediately (i.e., without
trials and without resource-intensive learning) exploited to create effective behaviour. e
approach collects character and game-environment observations, and extracts from those a
‘case base’. is approach to adaptive game AI is expected to be particularly successful in ga-
mes that have access to the internet to store and retrieve samples of gameplay experiences.

4.1 | What is case-based adaptive game AI? 43

Figure .: Case-based adaptive game AI (see text for details).

For instance, in the popular Massive Multiplayer Online Games (MMOGs), observations
from many games played against many different opponents will be available to the game AI.

e approach, illustrated in Figure ., selects a subset of cases from the case base that
are relevant for the current game circumstances (cf. retrieval).e selected cases are adapted
to fit the current game circumstances (cf. reuse), and are verified in online gameplay (cf. re-
vise). Newly generated gameplay experiences are stored in the case base (cf. retain). As such,
the approach extends the feedback loop of incremental adaptive game AI by () explicitly
processing observations from the game AI, and () allowing the use of game-environment
attributes which are not directly observed by the game character (e.g., observations of team
members).

Like incremental adaptive game AI, case-based adaptive game AI will typically be im-
plemented for performing adaptation of the game AI in an online and computer-controlled
fashion. Improved behaviour is established by continuously making (small) adaptations to
the game AI. Case-based adaptive game AI in such an implementation can be characterised
by its scheme for case-based adaptation. is scheme can be summarised as follows.

Case-based adaptation: To adapt to circumstances in the current game, the adaptation
process is based on domain knowledge drawn from observations of a multitude of
games. e domain knowledge is gathered in a case base, and is typically used to ex-

 In many games, human team members share game observations with each other in order to play effectively.
Analogously, the designer of game AI may choose to incorporate game observations from several sources into
the game AI in order to enhance its effectiveness. In some cases, game AI incorporates game observations that
could not possibly be observed by the game AI itself (e.g., observations of the opponent players). e latter is
typically considered as a form of ‘cheating’ behaviour.

44 Case-based adaptive game AI

tract models of game behaviour, but can also be exploited directly to adapt the AI to
game circumstances.

In our proposal of case-based adaptive game AI three main components are required
for game adaptation, viz. () an evaluation function, () an adaptation mechanism, and ()
opponent modelling. A case base is used to extract an evaluation function and opponent
models. Subsequently, the evaluation function and opponent models are incorporated in an
adaptation mechanism that directly exploits the gathered cases. We will introduce the three
main components in Section ., and discuss each component inmore detail in the chapters
that follow.

e approach to case-based adaptive game AI is inspired by the human capability to
reason reliably on a preferred course of action with only a few online observations on the
problem domain. Following from the complexity of modern video games we propose that
for effective and rapid use, game observations should be () represented in such a way that
the stored cases can be reused for previously unconsidered situations, and () be compactly
stored in terms of the amount of gathered observational data. As far as we know, case-based
adaptive game AI has not yet been applied in an actual, commercially released video game.

e actual video game in which we intend to implement case-based adaptive game AI, is
the RTS game S. S is a complex game for which establishing effective adaptive
game AI is a challenging task. e game, as well as the topic of complexity, are described
further in Appendix A.. To obtain an early indication of the effectiveness of case-based
adaptive game AI, we first will implement a limited form of case-based adaptive game AI
in S, and subsequently, we will implement case-based adaptive game AI in a limited,
simulated video-game environment.

.. Contributions and limitations of the approach
Game developers may consider using an alternative approach to game AI when they are
convinced of its qualitative effectiveness. e main contribution of our research therefore is
demonstrating that case-based adaptive game AI can be applied in an actual, commercially
released video game. In the remainder of the thesis we will demonstrate in a complex RTS
game that the approach can be applied to both generate effective game strategies, and to
scale automatically the difficulty level to the player.

To this end, the approach is adjusting a pre-existing game AI, rather than ‘being the AI’
(as most previous approaches to game AI). It is based on a case base drawn from observati-
ons of a multitude of games. Particularly in the popular massive multiplayer online games,
the case base is expected to grow rapidly. With a sufficiently large and diverse case base, the
adaptation process no longer needs to go through a large number of adaptation trials, but
instead can adapt instantly to game circumstances. Furthermore, the game AI will become
robust in dealing with non-determinism, since the case base can be used as a model to pre-
dict the results of game strategies. An advantage of the approach tying in with a pre-existing
game AI, is that it enables game developers to control and predict with relative accuracy
the behaviour that is exhibited by the game AI. In addition, the case base can be utilised
for providing feedback on distinct strengths and weaknesses of a player, and can provide

4.2 | Case-based adaptive game AI for map adaptation 45

inexpensive insight into the balance of a game. us, it can help in testing and debugging
the game.

Indeed, the approach has certain limitations. A first limitation is that it is not fully know-
ledge free, but requires some domain knowledge to steer the adaptation process. For in-
stance, the features to compare the similarity of game observations need to be established.
We assume that such domain knowledge is available to the developers of the game. A second
limitation is that for effective adaptation, the case base needs to contain cases relevant to
the current circumstances. is limitation is partially addressed by generalising over stored
cases. A third limitation is that the ability to adapt to changing circumstances is restricted
by the behavioural expressiveness provided by the game AI that the approach ties in with.

4.2 Case-based adaptive game AI for map adaptation

In this section, we report on an experiment to test a limited form of case-based adaptive
game AI in an actual video game. A limited form of case-based adaptive game AI is to in-
clude offline-generated domain knowledge in the adaptation process of game AI. is form
of case-based adaptive gameAI does not implement the cycle to abstract actual game obser-
vations into a case base, to be used in the adaptation process (see Figure .); the adaptation
mechanism operates without reasoning on the generated domain knowledge.

Still, the described form of adaptation may be used in many instances of adaptive game
AI. One such instance of adaptive game AI, is game AI with the ability to automatically esta-
blish effective behaviour dependent on features of the game environment (i.e., the so-called
map). is is called ‘map-adaptive game AI’. In our implementation of map-adaptive game
AI, a particular map is first analysed for specific features. Subsequently, an automatically
constructed decision tree is applied to adapt the game AI according to features of the map.
To automatically construct the decision tree, information is incorporated from a data set of
effective game strategies.

In this section we will first present our approach to establish map-adaptive game AI
(..). Next, we report on the experiment that tests the approach (..). e section is
concluded by a discussion of the obtained results (..).

.. Approach to map adaptation
Our approach to map adaptation consists of three components: (A) definition of the featu-
res of a map, (B) determination of compound actions of map-adaptive strategies, and (C)
automatic construction of a decision tree of map-adaptive strategies.

We establish map-adaptive game AI in an RTS game environment, i.e., a simulated war
game. Here, a player needs to gather resources for the construction of units and buildings.
e goal of the game is to defeat an enemy army in a real-time battle. We use RTS games for
their highly challenging nature, which stems from three factors: () their high complexity,
() the large amount of inherent uncertainty, and () the need for rapid decision making

 e work reported on in this section is performed by Van der Blom et al. (), under supervision of the
author.

46 Case-based adaptive game AI

Figure .: Screenshot of the S game environment. In the screenshot, the base on the top left is
being attacked via a narrow cliff passage.

(Buro and Furtak, ). In the present research we use S, illustrated in Figure .,
which is a typical and open-source RTS game. A S game is won by the player who first
destroys the opponent’s ‘Commander’ unit. An extensive description of S is provided
in Appendix A..

A. Features of a map

To automatically establish map-adaptive game AI, we start by defining a basic set of features
that will play an essential role in the strategy of a player. For our experiment, we decided to
use five features of a map. ese five features are () number of metal resources (RN), ()
resource density (RD), () number of relatively narrow roads (e.g., due to obstacles such as
mountains and rivers) (NR), () number of cliffs (CL), and () distance between base loca-
tions (DE). Indeed, we admit that by manually defining and selecting the features of a map
we may restrict the effectiveness of map adaptation. e investigation of further improve-
ments with respect to the definition and selection of features is considered a topic for future
research.

Feature values will be used to automatically construct a decision tree of map-adaptive
strategies. If we would allow all possible feature values, an explosion in the number of nodes

4.2 | Case-based adaptive game AI for map adaptation 47

in the decision tree would occur. We therefore divide the range of feature values in bands
(Evans, ), in our case ‘None’, ‘Few’, and ‘Many’. We note that game maps may vary in
size. erefore, feature values are scaled proportionally to the size of the map.

B. Map-adaptive game AI actions

When the game map has been analysed, game AI is established on the basis of compound
actions of map-adaptive strategies. For our experiment, we decided to use seven compound
actions. ese seven compound actions are () construction of metal extractors at nearby
metal resources, () construction of metal extractors at far away metal resources, () place-
ment of offensive units at relatively narrow roads, () placement of offensive units at own
base, () placement of artillery on cliffs, () protection of operational metal extractors, and
() protection of artillery on cliffs. e defined compound actions can be used to establish
offensive as well as defensive stances of game AI.

C. Decision tree of map-adaptive strategies

In our experiment, we consider a decision tree to be a tree where () each internal node
represents a feature to be analysed, () each branch corresponds to a band of feature values,
and () each leaf node assigns a classification. In this setup, the decision tree has a discrete
outcome, namely a classification based on the input features values. Such a decision tree
may be referred to as a ‘classification tree’.

In the S game, each feature of the map can be expressed by discrete values (e.g.,
the number of metal resources). Analogous to work by Fu and Houlette (), we employ
the standard ID learning algorithm (Quinlan, ; Mitchell, ) to construct a decision
tree for the S game.e ID algorithmhas a preference for constructing shallow trees,
with the features with a high information gain located near the root of the tree.

.. Experiment with map adaptation
is subsection reports on an experiment that tests our approach to establish map-adaptive
gameAI.We first describe (A) the process of constructing the decision tree, that will be used
in the experiment. Subsequently, we discuss (B) the experimental setup. Next, we present
and discuss (C) the obtained results.

A. Constructing the decision tree

As mentioned in Subsection .., we use the ID learning algorithm to construct the deci-
sion tree from experimentally determined training data. e training data consist of input
data with values for features of the map, and the corresponding target output data in the
form of actions of the game AI.

 Such an explosion in the number of nodes would occur for the adopted ID algorithm (see Subsection ..-C)
but not necessarily for other TDIDT algorithms, such as those that perform a type of pruning (cf. Breslow and
Aha, ).

48 Case-based adaptive game AI

Example Feature Action(s)RN RD NR CL DE

X Few High No None Far 
X Few High No Few Far 
X Few High No Many Far ,
X Few High Yes None Far ,
X Few High Yes Few Far ,
X Few High Yes Many Far ,,
X Few Low No None Far −
X Few Low No Few Far −
X Few Low No Many Far −,
X Few Low Yes None Far −,
X Few Low Yes Few Far −,,
X Few Low Yes Many Far −,,
X Many High No None Far +
X Many High No Few Far +
X Many High No Many Far +,
X Many High Yes None Far +,
X Many High Yes Few Far +,
X Many High Yes Many Far +,,
X Many Low No None Far +
X Many Low No Few Far +
X Many Low No Many Far +,
X Many Low Yes None Far +,
X Many Low Yes Few Far +,,
X Many Low Yes Many Far +,,
X Few High No None Close ,,
X Few High No Few Close ,,
X Few High No Many Close ,,,
X Few High Yes None Close ,,,
X Few High Yes Few Close ,,,
X Few High Yes Many Close ,,,,
X Few Low No None Close −,,
X Few Low No Few Close −,,
X Few Low No Many Close −,,,
X Few Low Yes None Close −,,,
X Few Low Yes Few Close −,,,,
X Few Low Yes Many Close −,,,,
X Many High No None Close +,,
X Many High No Few Close +,,
X Many High No Many Close +,,,
X Many High Yes None Close +,,,
X Many High Yes Few Close +,,,
X Many High Yes Many Close +,,,,
X Many Low No None Close +,,
X Many Low No Few Close +,,
X Many Low No Many Close +,,,
X Many Low Yes None Close +,,,
X Many Low Yes Few Close +,,,,
X Many Low Yes Many Close +,,,,

Table .: Training data for map-adaptive game AI.

In Table ., the training data used for map-adaptive game AI is given. Training data
concerns the features of the map of the S game, and constitutes the entire instance
space. In the first column, the labels of the training examples are listed, X to X. en the
value of each feature is listed in column two through column six. Column seven lists the
actions to be taken by the game AI. e legend of the table is explained earlier and repeated
here. “RN” means number of metal resources. “RD” means resource density. “NR” means

4.2 | Case-based adaptive game AI for map adaptation 49

Figure .: e automatically constructed decision tree.

presence of relatively narrow roads (e.g., due to obstacles such as mountains and rivers).
“CL” means number of cliffs. “DE” means distance between base locations. “−” means first
executing the action before the dash sign, then the action after the dash sign. “+” means
executing the actions on both sides of the plus sign simultaneously.

In Figure ., an exemplar portion of the constructed decision tree is displayed; it is
constructed on the basis of the training data. e legend of the figure is equal to that of
Table .: “RN” means number of metal resources, etc. Below, we give two observations on
the constructed decision tree.

First, the feature ‘Number ofmetal resources’ is placed at the root of the tree.is implies
that the number ofmetal resources is themost important featurewhen analysing amap.is
observation fits our expectation, since metal resources are vital to expanding the base and
constructing the first units.

Second, if the number of metal resources is low, the constructed decision tree considers
the ‘Resource density’ as the next-most important feature of the map. In contrast, if the
number of metal resources is high, the resource density is the least important feature. is
observation fits our expectation, since the use of the feature ‘Resource density’ is correlated
to the number of metal resources.

50 Case-based adaptive game AI

B. Experimental setup

To test our approach to map adaptation experimentally, a map-adaptive game AI is pitted
in the S game against the same game AI without map-adaptive capability. In the ex-
periment, we measure the performance of the map-adaptive game AI, which is expressed
by its ability to win when pitted against the game AI without map-adaptive capability. We
used a game AI which is open source, which the author of the game AI labelled ‘Alexander
AI’ (‘AAI’) (Seizinger, ). We enhanced the game AI with the capability to adapt its be-
haviour dependent on the features of the map. For map adaptation, the map-adaptive game
AI utilises the constructed decision tree.

Next to pitting the map-adaptive game AI against the same game AI without map-
adaptive capability, we also pit the map-adaptive game AI against a human-controlled op-
ponent. e human-controlled opponent will generally play at an expert level. ereby, as
the constructed decision tree contains some nodes that focus on opponent behaviour on a
certain map, its purpose is to incite different adaptations from the map-adaptive game AI.

We performed one experiment that consists of five experimental trials, i.e., one trial for
each of the five maps used. Each experimental trial to test the map-adaptive game AI was
repeated five times. An overview of the used maps is given in Figure .. A description of
each map is given below.

Map  - Speed Ball: e Speed Ball map has many metal resources, and the players are al-
ways located relatively close to each other. is allows us to determine whether the
map-adaptive game AI attempts to protect its own units. In the depicted black area
of the map nothing can be constructed. When two AI players compete against each
other, they may easily be triggered to attack each other early in the game. It is the-
refore expected that different AI behaviour will be observed when a relatively idle
human player is involved as the second player.
Gameplay on this map is focussed on responding effectively to the following features
of the map: ‘Number of Resources’, ‘Resource Density’, and ‘Distance between base
locations’. Action ‘+,,’ is expected to be executed, which corresponds to example
X from Table ..

Map  - Speed Ball Ring -way: eSpeed Ball Ring -waymap hasmany similarities with
the Speed Ball map. However, instead of one big circle, this map is divided into eight
equally sized circles, and one larger circle in the middle. All the circles are intercon-
nected. e pathways that connect the circles are not very wide, which implies that
they are considered as ‘Narrow Roads’. ere is a relatively large number of metal re-
sources available on this map. Players are positioned randomly at the beginning of the
game, thus the distance between the players may vary.
Gameplay on this map is focussed on all of the features other than ‘Number of cliffs’.
It is expected that the actions ‘+,’ or ‘+,,,’ will be executed, corresponding to
the examples X and X from Table ., respectively.

Map  - Mountain Range: e Mountain Range map does not have many metal resources.
Additionally, the mountains are obstacles that obstruct the roads, making navigation

4.2 | Case-based adaptive game AI for map adaptation 51

(a) Speed Ball (b) Speed Ball Ring -way

(c) Mountain Range (d) Small Supreme Battle-
field v

(e) No Metal Speed Metal

Figure .: e five maps that have been used in the experiment.

relatively difficult. Each location for constructing a base on this map has its own ad-
vantages and disadvantages. e use of metal storages is recommended on this map,
because of diminishing metal resources.

emap is relatively large.erefore, the distance between the base of two players will
typically remain large in a one-versus-one battle, as is the case here. Gameplay on this
map is focussed on the features ‘Number of Metal Resources’, ‘Resource Density’, and
‘Narrow Roads’. We expect that the game AI will execute action ‘,’, corresponding to
example X from Table ..

Map  - Small Supreme Battlefield v: e Small Supreme Battlefield v map contains a
long bottleneck in the centre of the map. On each side of the map there is a large area
of water. On the other two sides of the map there are small areas of land. e map has
relatively few metal resources, some of which are available in the water areas.

We expect that the gameAI will execute action ‘−,’, corresponding to example X,
or ‘−,,,’, corresponding to example X from Table ..

52 Case-based adaptive game AI

Map  - No Metal Speed Metal: e No Metal Speed Metal map is based on the Speed
Metal map. However, as the name implies, this particular map does not contain any
metal resources.e lack ofmetal resourcesmakes it difficult to quickly produce units
and expand the base. A challenge for the trainedmap-adaptive gameAI is that it is not
provided with training examples where no metal resources are present on the map.
We expect that the game AI will choose action ‘−,’, corresponding to example X,
or ‘−,,’, corresponding to example X and X from Table .. Actions ‘−,,,’,
corresponding to example X, and ‘−,,,,’, corresponding to examples X and
X, are alternative possibilities.

In addition to pitting the map-adaptive game AI against a computer opponent, the AI
was also tested in play against a human opponent (i.e., the experimenter). Our expectation
was that different behaviour will be exhibited by the map-adaptive game AI when pitting it
against a human opponent that is following a superior game strategy, as compared to when
the map-adaptive game AI is pitted against a computer opponent.

C. Results

In Table ., an overview of the experimental results is given. e results reveal that in all
of the trials, the map is classified as expected. When in competition against a computer-
controlled opponent, the map-adaptive game strategies that emerge from the given classi-
fications lead to superior behaviour in four of the five trials (two times a : win:loss, and
two times a : win:loss), and to inferior behaviour in one of the five trials (a : win:loss).
When in competition against a human-controlled opponent, themap-adaptive gameAI was
outperformed in all of the five trials. However, we observed that the map-adaptive game AI
responded to strong play of the human player by adapting its own strategy. So, we have to
improve this adaptive behaviour.

Below we discuss in detail the behaviour observed of themap-adaptive game AI for each
of the five maps.

Map  - Speed Ball: We observed that when the map-adaptive game AI played against the
computer-controlled player, the players did not focus on gathering resources and buil-
ding an army. Players became offensive early in the game and continued battling while
constructing buildings and units (usually infantry and artillery), which assisted them
in defeating their opponent. is occurred in each of the five times that they played
on this map.
When a human player was involved, the map-adaptive game AI behaved differently.
One time the human player played offensively, and seemed to be defeating the game
AI. However, the game AI was able to counter this behaviour by also playing offensi-
vely. Yet, the result was a win for the human player. A second time the human player
stayed in the background and remained relatively idle for a long period of time, only
taking actions in order to defend himself.e result was that the gameAI focussed to a
larger extent on gathering resources before actually attacking its opponent. Also here,
the human player won. is outcome (the human player wins) was repeated three
more times.

4.2 | Case-based adaptive game AI for map adaptation 53

Computer Human

Map  - Speed Ball
Classification X () X ()
Win:Loss : :

Map  - Speed Ball Ring -way
Classifications X () X ()

X () X ()
Win:Loss : :

Map  - Mountain Range
Classification X () X ()
Win:Loss : :

Map  - Small Supreme Battlefield v
Classification(s) X () X ()

X ()
Win:Loss : :

Map  - No Metal Speed Metal
Classification(s) X () X ()

X ()
Win:Loss : :

Table .: Classifications of the map-adaptive game AI in competition against the computer-
controlled player, and against the human player.

Map  - Speed Ball Ring -way: When the map-adaptive game AI played against another
computer-controlled player, the game AI often performed action ‘+,’, as expected.
ere was only one occurrence of action ‘+,,,’ being performed, when the game
AI was in the middle circle and decided to place offensive units at the entrance of the
pathways connecting to the other circles, while the other player was on one of the
outer circles.
e map-adaptive game AI fared well against the human player with the same actions
as expected, but again the human player had to remain inactive for the most part in
order to provoke the game AI to exhibit behaviour that was expected of it. Otherwise,
more offensive subroutines of the game AI would take over and battles occurred early
in the game. ere were two occasions where the game AI was located in the middle
of the map, resulting in a different action, namely ‘+,,,’. e human player won
all five encounters.
Because starting positions of both players were random, classifications by the decision
tree were also different at each time that a new game was started. is is caused, in
particular, by the distance between both players. It explains the large difference in
classifications.

Map  - Mountain Range: We observed that on this map, the map-adaptive game AI was
strongly focussed on gathering nearby metal resources early in the game. Additio-

54 Case-based adaptive game AI

nally, the game AI was blocking the passageways between the mountains, and, if ap-
plicable, between the edges of the map and the mountains. e game AI protected
the expanded position, and launched an attack on the opponent when it constructed
a relatively large army. e described strategy was consistently observed against both
the computer-controlled opponent, as well as against the human opponent. However,
the outcome was completely different (: for the map-adaptive game AI against the
computer-controlled player, and only losses against the human player).

We observed that early in the game, relatively few attacks would take place. e phe-
nomenon results from the relatively large distance between the base of each player.
As lower-level subroutines will not be called for handling an attack, the map-adaptive
game AI can focus on its first priority: establishing and expanding a strong base.us,
we observed that in all cases action ‘,’ was executed, as expected.

Map  - Small Supreme Battlefield v: When in competition against the computer-
controlled opponent, themap-adaptive gameAI had a preference for executing action
‘−,’. In most of the cases the game AI blocked the map’s bottleneck with offensive
units. In other cases the focus of the game was not so much on the bottleneck, but
more on the water area, on which the battle continued by sea units and submarine
units. e computer-controlled player always built its base on land located in the cor-
ner of the map, which implied that the distance between the bases remained fairly
large. All in all, the map-adaptive game AI won by :.

Identical behaviour by the map-adaptive game AI was observed in the competition
against a human player. However, the outcomewas entirely different, since the human
player won by :. On one occasion the human player constructed the base nearby the
base of themap-adaptive gameAI.is led theAI to increase the protection of its base
and metal extractors, by using offensive units.

Map  - No Metal Speed Metal: In competition against the computer-controlled game AI,
both players focussed on constructing offensive units to oppose their opponent. In ad-
dition, the map-adaptive game AI utilised units for protecting the entrance of its own
area. Apparently, it was not the correct strategy since the map-adaptive game AI lost
all five games. Similar behaviour was observed when competing against the human
player. In one case, the human player constructed the base in the centre of the map,
near the map-adaptive game AI. is led to a different classification, and thus diffe-
rent behaviour from the map-adaptive game AI. Yet, the outcome of the experimental
trial was the same. e human player won by :.

ough the map-adaptive game AI was not trained for circumstances where no metal
resources are present, it was able to utilise the learned decision tree by traversing
the node for ‘few metal resources’. However, it did not exhibit behaviour suitable for
defeating the opponent players. is indicates possible directions of improvements in
the provided domain knowledge.

4.3 | Case-based adaptive game AI in a simulated game 55

.. Discussion of the results

is subsection provides a discussion of the experimental results. We first discuss (A) how
well the results generalise to other games. Subsequently, we draw (B) experimental conclu-
sions of the present research.

A. Generalisation to other games

In our approach to map adaptation, we implemented map-adaptive game AI as a high-level
planner of strategic actions. We allowed low-level actions, such as handling an imminent
threat of the opponent, to interfere with the established high-level plan.

In a typical RTS game, early phases of the game are focussed on planning the construc-
tion and expansion of the base. Later phases of the game are typically focussed on engaging
in offensive or defensive actions. However, if an opponent would decide to attack relatively
early, a player would be forced to abandon the established plan and focus on combat. e-
refore, our implementation of map-adaptive game AI as a high-level planner of strategic
actions, may be considered suitable for RTS games.

e approach to map adaptation can be generalisised to other games that require a form
of high-level planning dependent on features of themap. Of course, game developers should
consider that to apply our approach in practice, in each game environment a specific balance
should be established between pursuing a high-level map-adaptive plan, and allowing the
game AI to respond to low-level actions.

B. Experimental conclusions

e results of the experiment withmap adaptation show that against a computer-controlled
opponent, themap-adaptive gameAI generally constructed effective game strategies.Howe-
ver, the map-adaptive game AI was outperformed by a human opponent. Still, we observed
that the map-adaptive game AI responded to the strong play by the human player by adap-
ting its own strategy. From these results, we may conclude that the proposed approach to
map adaptation can be used to automatically construct effective strategies dependent on the
map of a game.

Obviously, the behaviour expressed by the map-adaptive game AI is effected heavily by
the quality of the domain knowledge used. In our implementation of map-adaptive game
AI, domain knowledge was established offline, based on the experimenter’s experience with
the game. Ideally, domain knowledge should be established fully automatically, based on
observations of the game AI. is will be the focus of the next section.

4.3 Case-based adaptive game AI in a simulated game

In this section, we report on two experiments to test case-based adaptive game AI in a limi-
ted, simulated video-game environment.We investigate to what extent a game character can
gather domain knowledge from a few observations, and immediately (i.e., without trials and

56 Case-based adaptive game AI

without resource-intensive learning) exploit the domain knowledge to create effective be-
haviour. We compare three approaches to exploit domain knowledge, namely () 1-nearest
neighbour (1-NN) classification, () weighted 1-nearest neighbour (weighted 1-NN) classi-
fication, and () k-nearest neighbour (k-NN) classification.

e remainder of the section is organised as follows. We first discuss the simulated vi-
deo game that we used for our experiments (..). Subsequently, we discuss how we gather
domain knowledge in a case base (..). Next, three approaches for exploiting the domain
knowledge are described (..). en, we report on the two experiments to test the per-
formance of the three approaches (..). e section is concluded by a discussion of the
obtained results (..).

.. Simulated video game
For our investigation we have created a simulator environment representing a simple video
game. e game is an obstacle course, in which a non-player game character (NPC) has to
travel from the bottom of a grid to the top of the grid. As NPCs can only obtain a good game
result if they are able to discover and exploit properties of the game, it poses an interesting
environment for our investigation.

A game grid is  cells wide, and  cells high. Each cell of the grid can contain an object.
e following six object types can be located on the grid.

. NPC.One NPC is located in the grid. It is the only object that can change its position.
Initially the NPC is placed in a random empty location on the bottom row of the grid
(row ). Tomanoeuvre to its goal (i.e., row  of the grid) it has three actions available:
() to move to the cell directly to its upper left, () to move to the cell directly above it,
and () to move to the cell directly to its upper right. As input, the NPC can observe
all cells of the five rows above it. It has two properties: health and fitness. Initially it
is provided with a health value of . e NPC ‘dies’ (i.e., is removed from the grid)
when its health reaches zero.e fitness value of theNPC is determinedwhen it either
dies or reaches the top row of the grid. It is calculated as S/(H− 1), where S is the
number of steps taken by the NPC, andH is the height of the grid. On the screen, the
NPC object is visually represented by a light-blue colour.

. Wall. All the leftmost and rightmost cells of the grid contain wall objects. When an
NPC tries to enter a cell in which a wall object is located, it dies. On the screen, the
wall object is visually represented by a black colour.

. Goal.All the cells on the top row of the grid (except for those containing a wall object)
contain goal objects. When an NPC enters a cell in which a goal object is located, its
fitness is determined and the NPC is removed from the grid. On the screen, a goal
object is visually represented by a grey colour.

. Tree. An arbitrary number of trees can be located in the grid. Trees are treated as
walls, i.e., when an NPC tries to enter a cell in which a tree is located, it dies. On the
screen, a tree object is visually represented by a green colour.

4.3 | Case-based adaptive game AI in a simulated game 57

Figure .: ree grids designed for our experiments. Note that mines are not visible to the NPC.

. Turret. An arbitrary number of turrets can be located in the grid. When an NPC is
within reach of a turret (defined as within a square of seven cells on each side and
the turret at its centre), its health is reduced by . Furthermore, when the NPC en-
ters a cell where a turret is located, it dies. On the screen, a turret object is visually
represented by a brown colour.

. Mine. An arbitrary number of mines can be located in the grid. NPCs cannot detect
mines. NPCs are allowed to move into a cell containing a mine. However, when that
happens the mine ‘explodes’, reducing the NPC’s health by . On the screen, a mine
object is visually represented by a red colour.

Only an NPC can co-exist with another object in a cell. Of all the other objects, each
cell can contain at most one. e three grids designed for our experiments are displayed in
Figure ..

.. Gathering domain knowledge
To gather, and later exploit, domain knowledge of the simulated video game, we draw inspi-
ration from the case-based reasoning methodology (see Subsection ..). In video games,

58 Case-based adaptive game AI

Figure .: Example of an absolute and relative observation abstraction. In both abstractions, first the
top-row cells are observed from left to right. Subsequently, the rows below are observed
analogously. e absolute abstraction commences at the top-left cell of the observed part
of the grid. e relative abstraction commences at the top cell located above the current
position of the NPC. In our experiment we used the relative observation abstraction.

the environments in which NPCs are situated typically excel in visual richness and state and
action-space complexity. is poses a challenge for a case-based reasoning approach. We
therefore propose that environment information which is gathered by the NPC should, for
effective and rapid use, be () represented in such a way that stored cases can be reused
for previously unconsidered situations, and () compactly stored in terms of the amount of
gathered observational data.

In our simulation, we wish to store the observations of an NPC, with the action it took,
and an assessment of the success of that action. Regarding the representation we decided
to store observations in the form of labelled state-action pairs. Each case consists of an ab-
straction of the world visible to the NPC, together with a description of the NPC’s action.
e environment state is abstracted relative to the NPC position (rather than from an ab-
solute viewpoint). is abstraction is illustrated in Figure .. In addition, each state-action
pair is labelled (and relabelled during a simulation trial) with the average observed fitness to
which the stored action has led when it were applied.e labelling process is algorithmically
described in Figure ..

Obtaining a compact storage of cases is an important topic in case-based reasoning re-
search. e main goal is to obtain a compact case base (i.e., with a reduced number of cases)
but without losing problem-solving accuracy (Lopez de Mantaras et al., ; Craw et al.,
; Cummins and Bridge, ). A common strategy to achieve this goal, is not incorpo-
rating cases that do not contribute to performance in a positive sense; thereby essentially
limiting the size of the case base (Smyth and Keane, ). Our implementation of this stra-
tegy is to store only those state-action pairs that did not directly lead to a death in the next

4.3 | Case-based adaptive game AI in a simulated game 59

 . To determine the f i t n e s s value , observe the NPC un t i l i t reaches a goa l
c e l l or d i e s .

 . R e t r i e v e NPC obse r va t i ons fo r every s t ep performed .
 . Check fo r each r e t r i e v e d obse rva t ion whether i t i s a l r e ady s tored .
a . I f so , update the f i t n e s s va lue of the r e t r i e v e d obse rva t ion by averag ing

over the f i t n e s s va lue s .
b . I f not , s t o r e the p a r t i c u l a r obse rva t ion with the ac t i on performed and the

f i t n e s s obta ined by the NPC.

Figure .: Labelling algorithm applied when gathering domain knowledge.

observable state. Our motivation for this strategy is that accordingly, a labelled case-base
arises of which all state-action pairs lead either to a local optimum, or to a global optimum.

.. Exploiting domain knowledge
We propose three approaches for exploiting domain knowledge gathered in the simulated
video game.e approaches are based on the reuse process-step of the case-based reasoning
methodology, in which solutions from previously stored cases are mapped to a new case.

Our case base contains the observations of NPCs traversing grids. To exploit the case
base for a new case, similarity values are calculated between the vector of observations of
the new case, and the vectors of observations of all the cases in the case base. Of the most
similar cases, the particular case with the highest fitness value is retrieved, and the action
which was performed by the NPC for that case is selected for the new case.

e three proposed approaches vary in their similarity-calculation algorithm. ey are:
(A) 1-NN classification, (B) weighted 1-NN classification, and (C) k-NN classification. e
1-NN approach was chosen as a way of baseline comparison. e weighted 1-NN and the k-
NN classification approacheswere chosen under the presumption of improved performance
with regard to feature weighting, and an increase in generalisation power, respectively. e
three approaches for exploiting domain knowledge are described as follows.

A. 1-NN classification

For 1-NN classification, similarity is calculated by a matching in which every identical ob-
served feature receives the same weight. e features of all three classification approaches
concern the cells of the five rows above the NPC (one feature per cell), which is abstracted
using a relative observation abstraction (as illustrated in Figure .). In our implementation
of 1-NN classification, the algorithm scales the similarity value to one hundred per cent
when all observed features are identical.

When similarity values are calculated for each case in the case base, the matching algo-
rithm subsequently retrieves the case(s) with the highest similarity value within a similarity
window. e similarity window defines the threshold similarity value of cases to be denoted
as ‘similar’. Should multiple cases be retrieved, the first case with the highest fitness value
is selected for execution. Should no cases be retrieved, the process is iterated by adjusting

60 Case-based adaptive game AI

function g e t S im i l a r i t y (c , observa t ion , F) : r ea l ;
begin
s im i l a r i t y :=  ;
for (f ∈ F) do
i f (obse rva t ion . f = c . f)
then s im i l a r i t y := s im i l a r i t y + obse rva t ion . f . Weight ;

r e s u l t := s im i l a r i t y / | F | ;
end ;

function getMostSimi larCase (C) : c ;
begin
c a s e _ s e l e c t e d := nu l l ;
f i t n e s s _ b e s t :=  ;
s imi l a r i t y_window :=  ;
s im i l a r i t y _w indows t ep s i z e :=  ;
repeat
begin
for (c ∈ C) do
begin
s im i l a r i t y _ v a l u e := g e t S im i l a r i t y (c , currentObservat ion , F) ;
i f (s im i l a r i t y >= s imi l a r i t y_window)
then
i f (c . f i t n e s s > f i t n e s s _ b e s t)
then
begin
c a s e _ s e l e c t e d := c ;
f i t n e s s _ b e s t := c . f i t n e s s ;

end
end ;
i f not (c a s e _ s e l e c t e d)
then
begin
s imi l a r i t y_window := s imi l a r i t y_window − s im i l a r i t y _w indows t ep s i z e ;
f i t n e s s _ b e s t :=  ;

end ;
end ;
unt i l (c a s e _ s e l e c t e d) ;
r e s u l t := c a s e _ s e l e c t e d ;
end ;

Figure .: Pseudo-code for the 1-NN classification process.

the similarity window so that it allows for less similar cases to be retrieved. is process is
illustrated in pseudo-code in Figure ..

We note that algorithms that operate with similarity windows are inefficient when ap-
plied only for retrieving the case with highest fitness. However, their structure allows for a
different selection of cases, that depends on the similarity, and not the fitness of cases.

4.3 | Case-based adaptive game AI in a simulated game 61

Figure .: Weighted similarity matching is established by weighting each observational feature with
respect to the relative NPC position.e portrayed situation displays that part of the grid
observed by theNPC.ehighlighted object on the top-left receives an exampleweight of
., and the highlighted object in the bottom-middle receives a weight of .. Allowed
actions of the NPC are denoted by arrows.

B. Weighted 1-NN classification

For weighted 1-NN classification, similarity is calculated by a matching in which features
closer to the NPC are weighed heavier than features further from the NPC. In our imple-
mentation, environmental observations are evaluated with consideration of the relevance to
the NPC. For instance, an observational feature directly above an NPC is assigned a larger
weight than a feature that is located two rows above theNPC.eweights assigned to obser-
vational features are shown in Figure .. e weights are determined by the experimenter,
on the basis of domain knowledge of the game environment. For the situation portrayed in
the figure, the observational feature on the left (the darker cell) will receive a relatively low
weight as it is relatively far from the NPC.

e similarity matching and case retrieval algorithm follow the same procedure as that
of the 1-NN classification approach.

C. k-NN classification

For k-NN classification (Fix and Hodges, ), similarity is calculated as a generalisation
over stored cases. A straightforward k-NN algorithm is used to classify a new case based on
the majority of the k-NN category. is process consists of two steps.

. Given a new case, the k-NN algorithm retrieves the k number of state-action pairs of
which the states are most similar to the new case (i.e., with highest similarity as calcu-
lated by the 1-NN classification approach). If state-action pairs exist with an identical
state-description, but with a different observed action, only the state-action pair with
the highest fitness is retrieved.

62 Case-based adaptive game AI

. Action classification is established by a majority vote among the actions of the retrie-
ved state-action pairs.

.. Experiments with exploiting domain knowledge
is subsection reports on two experiments that test our implementation of case-based
adaptive game AI in the simulated video game. We first discuss (A) the experimental setup.
Subsequently, we present and discuss (B) the obtained results.

A. Experimental setup

Our first experiment consists of a comparative study of the three approaches proposed for
exploiting domain knowledge.Our goal is to detectwhether the approaches are able to evoke
successful NPC behaviour without feeding prior knowledge to the NPCs. e experimental
procedure is as follows. Given a particular grid, we sample data of NPCs attempting to reach
the goal objects by choosing only random moves. We perform separate trials with game ob-
servations stored of , , and  subsequent randomly behaving NPCs. Subsequently, we
let an NPC use each of the three approaches to exploit domain knowledge, and we deter-
mine the fitness achieved. We consider that a different random behaviour leads to different
observations (and thus different domain knowledge gathered). erefore, for each grid and
each approach, the results are averaged over  repetitions of the experimental trial. Regar-
ding the k-NN classification algorithm, the value of k was chosen by assessing five different
values for each trial, and selecting the best performing value. e tested k values were , ,
, , and .

In our second experiment, we test how each of the three approaches would genera-
lise to different environments (i.e., test whether knowledge learned in one environment
can be transferred to another environment). We created a case base for grid by running
 randomly-behaving NPCs. Subsequently, we applied the three approaches to control an
NPC that used the established case base on the other two grids (grid and grid). We chose
grid for gathering knowledge, as it is the most difficult grid for an NPC to traverse. For the
second experiment, we repeated the process  times for each of the grids, and for each of
the approaches.

B. Results

In Table . an overview of the experimental results is given. e first column of the table
lists on which grid the experimental trial is conducted. e second column lists the number
of games of which observational data is exploited for the experimental trial.e third to fifth
column lists the performance obtained by 1-NNclassification, weighted 1-NNclassification,
and k-NN classification, respectively. e sixth column lists the best performing setting of
k that was used by the k-NN classification approach.

Experimental results of the first experiment reveal that, as may be expected, all pro-
posed knowledge exploitation approaches endow an NPC with more effective behaviour
whenever an increased amount of domain knowledge is available to the exploitation pro-
cess. In addition, when training and testing on the same grid, both the 1-NN classification

4.3 | Case-based adaptive game AI in a simulated game 63

 Obs. 1-NN Weighted 1-NN k-NN

Grid  . (.) . (.) . (.) k=
( repetitions)  . (.) . (.) . (.) k=

 . (.) . (.) . (.) k=

Grid  . (.) . (.) . (.) k=
( repetitions)  . (.) . (.) . (.) k=

 . (.) . (.) . (.) k=

Grid  . (.) . (.) . (.) k=
( repetitions)  . (.) . (.) . (.) k=

 . (.) . (.) . (.) k=

Knowledge transfer  . (.) . (.) . (.) k=
(Grid  to ,  rep.)

Knowledge transfer  . (.) . (.) . (.) k=
(Grid  to ,  rep.)

Table .: Comparison of the performance of the three approaches. e performance is expressed in
terms of the mean fitness and the standard deviation, denoted as ‘mean (standard devia-
tion)’.

and weighted 1-NN classification approach outperform the k-NN classification approach
significantly with ten or more observations (cf. t-test, Cohen, ). e performance of the
1-NN classification and weighted 1-NN classification approach do not differ substantially
in this setting.

Experimental results of the second experiment, reveal that when training and testing on
different grids for the purpose of generalising over domain knowledge, the performances of
the 1-NNclassification andweighted 1-NNclassification approach differ.When transferring
domain knowledge from grid to grid and grid, theweighted 1-NN classification approach
outperforms the 1-NN classification approach with statistical reliabilities of  and ,
respectively (cf. t-test, Cohen, ).

Note that the k-NN classification approach is the only approach where the performance
does not degrade substantially when transferring domain knowledge. is is an important
issue with regard to generalisation. However, despite the obtained non-degrading perfor-
mance of the k-NN classification approach, in absolute terms it performs worst of all three
approaches. Namely, for knowledge transfer from grid, to grid and to grid, it is outper-
formed by the 1-NN classification approach with statistical reliabilities of  and , res-
pectively (cf. t-test, Cohen, ).

.. Discussion of the results

is subsection provides a discussion of the experimental results.We first discuss (A) which
behaviour was learned by the NPCs. Subsequently, we draw (B) experimental conclusions
of the present research.

64 Case-based adaptive game AI

A. Generalisation of the learned behaviour

In our experiments, we tested our implementation of case-based adaptive game AI in a si-
mulated video game. e observed ability to exploit effectively domain knowledge (that was
gathered on grid) on other grids (grid and grid), indicated the capability to generalise
over stored cases. For instance, in both grid and grid the ‘trick’ that needed to be learned
was to avoid the numerous trees at the start, and subsequently remain on the right side of
the grid.us, even though the grids are different, theNPC behaviour to be expected should
be similar in particular circumstances. In the experimental results we noticed that the k-NN
classification approach is the only approach where the obtained performance does not de-
gradewhen transferring gathered domain knowledge to another domain, compared towhen
gathered domain knowledge is exploited in the same domain. e capability that the k-NN
classification approach showed for generalising over stored cases, is invaluable for adaptive
game AI in actual video games, since it would allow a means of learning relatively reliably
from only a few trials.

To this extent, in our view it is recommendable to apply previously established effective
behaviour in known circumstances. If in unknown circumstances such predictably effective
behaviour is not available, game AI should generalise over previous observations that are
stored in the case-base.

B. Experimental conclusions

From the results of the experiments that tested the proposed approaches to exploit domain
knowledge, we may draw the conclusion that the approach to weighted 1-NN classification
performs best in the simulated video game. Our findings on the approaches’ capabilities
to transfer domain knowledge showed that the approach to weighted 1-NN classification
performed best, but applying the k-NN classification approach resulted in the most non-
degrading performance. We indicated the importance of generalising over stored cases.

In the next section, we discuss how to extend our findings to actual video games. In
our discussion, we will focus particularly on how the practical applicability of case-based
adaptive game AI may be demonstrated.

4.4 Towards case-based adaptation in video games

In this section we aim at understanding how to implement case-based adaptive game AI in
an actual video game. So far, we performed two experiments to obtain an early indication of
the effectiveness of case-based adaptive game AI.

In the first experiment (Section .), we implemented a limited form of case-based adap-
tive game AI in the S game.e experiment aimed at establishingmap-adaptive game
strategies. e experimental results revealed that map-adaptive game strategies may be es-
tablished automatically by exploiting domain knowledge effectively. However, the domain
knowledge used in our experiments was generated manually by the experimenter. is indi-
cates that effective adaptive game AI can be established if domain knowledge of high quality

4.5 | Chapter summary 65

is available. In our preferred situation, domain knowledge is generated fully automatically,
based on observations of the game AI.

In the second experiment (Section .), we implemented case-based adaptive gameAI in
a limited, simulated video-game environment. e experiment performed in the simulated
video game concerned the automatic gathering and exploitation of domain knowledge. e
experimental results revealed that domain knowledge may be gathered automatically, and
may be exploited immediately (i.e., without trials and without resource-intensive learning)
to create effective behaviour. ough the investigated environment concerned a simulated
video game, and not an actual, complex video game, it indicated that effective adaptive game
AI may be established automatically, following the proposed approach to case-based adap-
tive game AI.

Of course, the question remains which components in particular are required to im-
plement case-based adaptive game AI in an actual, complex video game, such as S.
As briefly discussed in Section ., in our view three main components are required for
case-based adaptive game AI. ese three components are introduced below. In the three
chapters that follow, each component is discussed in detail.

First, in the discussed simulated video game it is an easy task to evaluate the quality of
behaviour expressed by the game AI. In the complex S game, it is a difficult task to
establish such evaluations. In Chapter , we discuss how a function to evaluate the behaviour
expressed by game AI can be established. Such a function is called an evaluation function.

Second, adaptation to game circumstances requires a mechanism that exploits game
observations effectively and rapidly. e mechanism needs to be capable of exploiting game
observations that have been gathered from amultitude of games, together with observations
of the current game. is is a challenging task. In Chapter , we discuss how a mechanism
to adapt AI to circumstances of the game can be established. Such a mechanism is called an
adaptation mechanism.

ird, the challenge of adapting AI in video games effectively, stems for a large part from
the fact that effective adaptation needs to depend on the strategy of the opponent player.
In a typical video game, the inherent randomness and imperfect information of the game
environment renders establishing models of the opponent player a difficult task. In Chap-
ter , we discuss how to establish and exploit models of the opponent player. is is called
opponent modelling.

4.5 Chapter summary

In this chapter we proposed an alternative, novel approach to create adaptive game AI, i.e.,
case-based adaptive game AI. We performed two experiments to obtain an early indication
of the effectiveness of case-based adaptive game AI. In the first experiment, effective map-
adaptive game strategies were established by a limited form of case-based adaptive game AI.
In the second experiment, effective behaviour was established by case-based adaptive game
AI in a limited, simulated video-game environment. e results of these two experiments
indicated that effective AI in an actual video game may indeed be established by following
the approach to case-based adaptive game AI.

66 Case-based adaptive game AI

We discussed that for case-based adaptive game AI to be successful in an actual video
game, such as the complex S game, three main components are required. ese three
components are () an evaluation function, () an adaptation mechanism, and () opponent
modelling. Each component is investigated in detail in the chapters that follow.

5
The evaluation function

In this chapterwe concentrate on the evaluation function, one of the threemain components
of case-based adaptive game AI. To be precise, we investigate a static heuristic evaluation
function (cf. Pearl, ). In the present research, we use the evaluation function as a pre-
dictor of the final outcome of a game. e evaluation function drives the behaviour that is
exhibited by case-based adaptive game AI. Obviously, the accuracy of the function plays a
major role in the effectiveness of the exhibited behaviour. We will show that in complex vi-
deo games, it is possible to establish an evaluation function that rates accurately the state of
the game.

Chapter  is organised as follows. We first describe the concept of evaluations functions
(Section .). Subsequently, we outline our evaluation function for an actual, complex RTS
game (Section .). Next, we report on the validation of the evaluation function (Section .).
Finally, we present the chapter conclusions (Section .).

is chapter is based on the following four publications.
) Bakkes, S. C. J., Kerbusch, P., Spronck, P. H. M., and Van den Herik, H. J. (a). Automatically evaluating

the status of an RTS game. In Van Someren, M., Katrenko, S., and Adriaans, P., editors, Proceedings of
the Annual Belgian-Dutch Machine Learning Conference (Benelearn ), pages –. University of
Amsterdam, Amsterdam, e Netherlands.

) Bakkes, S. C. J., Kerbusch, P., Spronck, P. H. M., and Van den Herik, H. J. (b). Predicting success in
an imperfect-information game. In Van den Herik, H. J., Uiterwijk, J. W. H. M., Winands, M. H. M., and
Schadd,M. P. D., editors, Proceedings of the Computer GamesWorkshop  (CGW ), MICCTechnical
Report Series -, pages –. Maastricht University, Maastricht, e Netherlands.

) Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (c). Phase-dependent evaluation in RTS
games. In Dastani, M. M. and de Jong, E., editors, Proceedings of the th Belgian-Dutch Conference on
Artificial Intelligence (BNAIC ), pages –. Utrecht University, Utrecht, e Netherlands.

) Bakkes, S. C. J. and Spronck, P. H. M. (). Automatically generating a score function for strategy games.
In Rabin, S., editor, AI Game Programming Wisdom , pages –. Charles River Media, Inc., Hingham,
Massachusetts, USA.

68 The evaluation function

5.1 Evaluation functions

We consider an evaluation function to be a function that rates the state of the game. To eva-
luate the state of the game adequately, one has tomodel the features that are important to the
domain (Gomboc et al., ; Billings, ; Fürnkranz, ). Often, the rating of a game
state is expressed by game features that are determined by the experimenter (Fürnkranz,
). Evaluation functions are commonly applied in the AI of classic games. In addition,
evaluation functions are increasingly applied in the AI of video games. e general goal of
an evaluation function applied in both classic as well as video games, is to drive the decision
making of the game AI.

In this section we describe how evaluation functions are applied in games. First, to illu-
strate the concepts that underlie evaluation functions, we outline how evaluation functions
are applied in classic games (..). Second, we outline how evaluation functions are applied
in video games (..).ird, we discuss the general procedure for establishing an evaluation
function (..). Finally, we describe how game knowledge that is gathered can be incorpo-
rated into the evaluation function (..).

.. Evaluation functions in classic games

As stated earlier in this section, evaluation functions are commonly applied in the AI of
classic games, such as in computer programs that play the game of chess (cf., e.g., VanDiepen
and Van den Herik, ). e general characteristics of evaluation functions applied in
classic games, can be described in terms of () the game environment in which they are
applied, and () the goal of evaluation. Both are discussed below.

Game environment: Classic games present an abstract game environment in which game
actions typically are performed in a turn-based fashion. Evaluation functions in classic
games usually operate in a discrete, perfect-information environment, with little to no
inherent randomness.

Goal of evaluation: In classic games, the goal of the evaluation function typically is to arrive
at the optimally reachable game state. Here, we remark that it is possible to define
other goals for evaluation functions. However, such a discussion is beyond the scope
of our framework. For detailed reading on this topic we refer to Donkers et al. ().

In classic games, it is common that search techniques are applied to find possible game
actions (i.e., moves to play). Search techniques, in turn, typically incorporate an evaluation
function to determine the rating of a subsequent state of the game. In general, search tech-
niques are designed to arrive at a quasi-optimal - instead of an optimal - solution with a
significant cost reduction (Pearl, ). An evaluation function, therefore, is often designed
to be relatively fast, while a certain amount of inaccuracy is permitted.

5.1 | Evaluation functions 69

Inmany classic games, expert players are able tomodel the game features that are impor-
tant to the domain. For instance, in the game of chess an important feature of evaluation
is the so-called ‘material balance’. e material balance is a measure of which pieces are
located on the board for each side, and is typically implemented as a summation of piece va-
lues. A common (and rough) assignment of piece values is: Queen equals nine Pawns, Rook
equals five Pawns, Bishop and Knight equal three Pawns (Euwe et al., ; Bramer, ;
Beal, ). e piece value of a Pawn can be chosen randomly, though often programmers
have chosen for a value of  or  (Van Diepen and Van den Herik, ). As the King
cannot be captured or traded during the course of the game, the piece value of the King
is commonly undefined, as already proposed by Turing (). Alternatively, the King can
be assigned an arbitrary high value, such as  Pawns (Shannon, ), to ensure that a
checkmate outweighs all other factors (Levy and Newborn, ).

A chess evaluation function that only takes the material balance into account can be
denoted as:

E =
∑
p

Vp(Pw − Pb) (.)

where Vp is the value of a piece of type p, and where Pw and Pb are the number of white or
black pieces of that particular type on the board, respectively.

Next to thematerial balance, additional game features are important in the game of chess
(Van Diepen and Van den Herik, ). Still, researchers estimate that even a significant ad-
vantage in so-called non-material factors, such as position, mobility, and safety is worth less
than . Pawns (Frey, ; Atkin and Slate, ). Admittedly, a chess evaluation function
that only takes the material balance into account is already capable of playing a decent game
of chess (Spracklen and Spracklen, ). Yet, in an attempt to play better,more sophisticated
evaluation functions are desired. In chess, many techniques have been tried to improve the
quality of the evaluation function. Here we mention some important publications that give
an adequate impression of the development of techniques in the area of evaluation functi-
ons in the game of chess: Beal (), Schaeffer (), Hartmann (a,b), Anantharaman
(), Beal and Smith (), and Baxter et al. (). e techniques are also applicable in
the domain of chess variants (Droste and Fürnkranz, ).

All in all, we may state that in the domain of classic games establishing an evaluation
function that accurately determines the rating of a game state remains a challenging task.
e same applies to the domain of video games.

.. Evaluation functions in video games
Until recently, AI of video games rarely took into account the incorporation of an evaluation
function. Nowadays, however, evaluation functions are applied with an increasing pace, to
accommodate game developers into their previously discussed desire to establish consistent

 Still, this is a difficult and time-consuming process in several games; the most notorious example is the game
of Go (Bouzy and Cazenave, ). It is one of the reasons why Go programs using the classic tree-search
method with a dedicated evaluation function have difficulties with achieving a strong level, despite intensive
research and additional use of knowledge-based methods (Chaslot et al., d).

70 The evaluation function

game AI (see Section .). To this end, game developers require the ability to adequately
assess the current game circumstances. Such an assessment can be modelled in game AI
using an evaluation function.

e general characteristics of evaluation functions applied in video games, can be descri-
bed in terms of the game environment in which they are applied, and the goal of evaluation,
as is done in the classic games. Both are discussed below.

Game environment: Video games present a realistic and complex environment in which
game actions typically are performed in a real-time fashion. e AI of video games
is expected to exhibit behaviour that is consistent with the presented environment.
Often, game AI is expected to exhibit ‘human-like’ behaviour (Laird and Van Lent,
). In these game environments, the determination of an adequate evaluation func-
tion can be difficult. is difficulty arises in particular from the fact that evaluation
functions for video games usually operate in a continuous, imperfect-information en-
vironment with a large amount of inherent randomness. In addition, the evaluation
function needs to be capable of modelling the behaviour of a multiplicity of game
characters, which may be controlled by more than one friendly player, and by more
than one opponent player.

Goal of evaluation: Evaluation functions in video games are typically applied for two goals.
A first goal for applying an evaluation function in a video game, is to steer the game
AI towards arriving at the most entertaining game state (instead of the optimally rea-
chable game state). A second goal for applying an evaluation function in a video game,
is to provide feedback on the effectiveness of the playing style of a player of the game.
Such feedback can be incorporated to adjust automatically the gameplay of the vi-
deo game, or can be an integral part of the game itself, such as in serious games and
game-driven intelligent tutoring systems.

e general procedure to establish an evaluation function for games is to start by defi-
ning features that are important for rating the state of the game. Subsequently, the defined
features are combined in a way that their relative importance is quantified.is general pro-
cedure is discussed inmore detail in the next subsection. In video-game practice, the defined
features most frequently are combined linearly, so that the task is to adjust the weights of a
weighted sum of features (Fürnkranz, ). To this end, game developers typically opt to
exploit solely their own expertise with the game environment. However, academics working
in video-game environments, often opt for a more knowledge-free approach, and incorpo-
rate machine learning techniques to automatically tune the evaluation function.

An example of an automatically tuned evaluation function can be seen in research ap-
plied to the game of T. T is a popular video game that was created in 
by Alexey Pajitnov, and has been made available for nearly every operating system and
hardware platform in existence (Carr, ). ough the game is seemingly simple, it has
been shown that optimally playing T is NP-complete, and is highly inapproximable
(Demaine et al., ). Still, by incorporating genetic algorithms to tune a game-specific
evaluation function, researchers were able to create a robot that was able to play T

5.1 | Evaluation functions 71

better than a human, under normal T-playing conditions (Fahey, ; Flom and Ro-
binson, ). For more information on evaluation functions for T, we refer the rea-
der to the recent articles by iery and Scherrer (a,b) that adequately review the state
of the art, and also add two more features to an existing evaluation function that played well
so far. e features are: () hole depth, and () the number of rows with holes. Incorporating
the seemingly straightforward features resulted in an improvement in playing strength up
to becoming the strongest program in the world.

.. Establishing an evaluation function
e general procedure for establishing an evaluation function consists of two steps. ese
two steps are: (A) feature definition and selection, and (B) feature weighting. e first step,
feature definition and selection, may include methods to define and select features automa-
tically. e second step, feature weighting, may include methods to establish appropriate
weights automatically.

A. Feature definition and selection

Determining which features to make available to an evaluation function is regarded as the
most difficult problem in artificial intelligence in games (Gomboc et al., ). e problem
was already mentioned in the early days of game-playing programs (Samuel, ). In the
domain of classic games, the task of defining and selecting features is generally performed
by the researcher, sometimes with the help of the literature or an expert grandmaster (e.g.,
IGM Boris Alterman was approached as expert for the chess program J). Also in the
domain of video games, where the game environment is highly complex, the task of defining
and selecting features is generally performed by the researcher. For instance, in the game of
T, it was shown, as stated above, that the precise selection of two adequate features was
sufficient for establishing a top-rated evaluation function (iery and Scherrer, a,b).

We note that numerous methods are available for defining and selecting features auto-
matically (cf. Guyon and Elisseeff, ). e automated construction of features for game
playing has been discussed by Utgoff (). Using the game tic-tac-toe as a testbed, Gom-
boc et al. () demonstrated () the incremental learning of layers of features, () the abi-
lity to train particular features in isolation, and () tools for the specification and refactoring
of features. Steps towards selecting features automatically, without using human expertise,
have been studied extensively in games such as chess (Hartmann, ; Beal and Smith,
; Anantharaman, ), checkers (Chellapilla and Fogel, ), and backgammon (Pol-
lack and Blair, ). A generic pattern-based approach to define and select features auto-
matically was established by Kaneko et al. (), and an approach to produce conjunctions
of basic features was established by Agrawal et al. (), both of which have been applied
successfully to the game of Othello (Buro, ).

 In this particular research, a robot was constructed to play the game under real-time conditions on an actual
T arcade machine. e robot’s only input signals came from a webcam monitoring the screen of the
T machine. A relay board was used to have the robot “press keys” on the machine.

72 The evaluation function

Despite some progress being made over the past decades, researchers argue that the
problem of feature definition and selection remains still largely unsolved (Fürnkranz, ;
Droste and Fürnkranz, ).

B. Feature weighting

Given a decision as to which features to include in the evaluation function, one must then
decide upon their relative importance (see Samuel, ; Gomboc et al., ). As was the
case with feature definition and selection, both in classic games and video games, it is com-
mon that the task of feature weighting is performed by the researcher. is is a relatively
straightforward task, yet one that requires () deep knowledge of the game environment, and
() much time for tuning the evaluation function (Van der Meulen, ; Miwa et al., ).
To avoid these potential obstacles, it is possible to establish appropriate feature weights au-
tomatically. However, one also needs to consider the significant complexity of video games,
which has increased continuously over the years.erefore, onemay assume that the task to
establish appropriate featureweights for evaluation functions in video games, is one that will
grow too difficult for game developers to perform. We therefore expect that feature weigh-
ting of evaluation functions in video games will increasingly be performed automatically.

Yet, establishing appropriate feature weights automatically is difficult too, since there
typically are no direct target values that could be used as training signals (Fürnkranz, ).
Fürnkranz () states that for tuning the evaluation function, in general, algorithms use
preference learning (Fürnkranz and Hüllermeier, ) (where pairs of moves or positions
are labelled according to the preference of an expert player) or reinforcement learning (Sut-
ton and Barto, ) (where moves or positions are trained based on information about the
eventual outcome of the game). Researchers typically opt for a linear combination of fea-
tures, as this keeps the evaluation time overhead low, and allows a fast approximation of
optimal weights, even in large systems (Buro, ).

TD-G (Tesauro, ) is typically referred to as the premier example of how
learning feature weights in an evaluation function can be used to yield a computer program
capable of playing at expert strength. TD-G is a neural network that trains itself
to be an evaluation function for the game of backgammon, by playing against itself and
learning from the outcome (Tesauro, ). To this end it incorporates temporal-difference
(TD) learning (Sutton, ). is learning technique has, for instance, been applied suc-
cessfully for learning piece values in the domain of chess (Beal and Smith, ), and in the
chess game-playing programKC (Baxter et al., ). Herewe repeat the successful
example of learning automatically feature weights for an evaluation function in the game of
T. In this game, the feature weights in top-rated evaluation functions have been lear-
ned automatically (iery and Scherrer, a,b). Still, in video games the application of
automatically weighted evaluation functions is rare. For additional ideas in the domain of
learning feature weights we refer, for instance, to CBR-related research by Leake et al. (),
Muñoz-Avila and Hüllen (),Wettschereck et al. (), and Zhang and Yang (), and
to research by Böhm et al. (), Szita and Lörincz (), and Chaslot et al. (c).

5.2 | An evaluation function for SPRING 73

.. Exploiting game knowledge
e use of a data set (and by extension, a case base) of game knowledge can be instrumental
to establishing effective game AI. A premier example of effective use of a data set of game
knowledge, is how the game of checkers was solved. In order to solve checkers within a
more-or-less reasonable timeframe, a data set was used that consisted of 3.9 × 1013 game
positions (Schaeffer et al., ).

Successful use of a data set of game knowledge in the domain of classic games has been
illustrated in, for instance, the game of shogi, where game records were used to tune an
evaluation function automatically (Miwa et al., ), and in the game of chess, where eva-
luation functions were tuned based upon a global ordering of a multiplicity of positions
(Gomboc et al., ).

In the last decade, also in the domain of video games, approaches have been established
for creating game AI based upon game knowledge gathered in data sets. For instance, re-
searchers established a successful method to imitate playing styles of players in the popular
fighting game S F Z  (unputtarakul and Kotrajaras, ). In related
work, researchers applied data sets for solving some of the decision-making problems pre-
sented in a clone of the game C II (Sánchez-Pelegrín et al., ). An observa-
tion of particular interest is that video games capable of supporting hundreds or thousands
of players simultaneously (i.e., massively multiplayer online games (MMOGs)) allow a data
set of game knowledge to expand rapidly (Spronck, b).e popularity of these video ga-
mes has increased drastically over the years (Harding-Rolls, ). For illustration, W
 W, the most popular MMOG, counts over . million monthly subscribers
(Blizzard, ), and has generated over . billion dollars since it was released to the mar-
ket (Harding-Rolls, ). Considering the growing availability of game observations, we
expect that in the near future increasingly more game AIs, and by implication evaluation
functions, will be established on the basis of automatically gathered game knowledge.

5.2 An evaluation function for SPRING

In this section we outline our evaluation function for an actual, complex RTS game. To
provide context for the reader, we first give a concise description of the typical RTS game
S (..), in which we will later validate the evaluation function. Subsequently, we de-
scribe how we will exploit a case base of game knowledge (..). Next, we propose the ge-
neral form of our evaluation function (..). e function consists of three components,
which are described in their own subsection. e three components are () a parameter to
indicate the phase of the game (..), () a term to measure the material strength (..),
and () a term to measure the commander safety (..).

.. e game environment
To provide context for the reader, in this subsection we give a concise description of the
game S. We organise our description as follows. First, we outline the play of the game.
Second, we describe the topic of environment visibility. ird, we discuss how a so-called

74 The evaluation function

tech tree is incorporated in the game. An extensive description of S is provided in
Appendix A..

Play of the game: S is a typical and open-source RTS game. It presents a strategic, si-
mulated war-game environment. In the game, generally two players are pitted against
each other. is type of play is investigated in the thesis. Alternatively, it is also com-
mon that two teams of players are pitted against each other.
Each player of the game needs to gather in-game resources for the construction of
units and buildings. e game involves play with up to  different unit types. At the
start of the game, each player is provided with one unit, the Commander unit.
Someunit types are directly involved in combat and aremobile (e.g., tank units). Other
unit types are not directly involved in combat and have a fixed location (e.g., metal
extractor buildings).e goal of the game is to defeat an opponent army in a real-time
battle, by using effectively the constructed units and buildings. A S game is won
by the player who first destroys the opponent’s Commander unit.

Environment visibility: S implements a so-called ‘Line of Sight’ visibilitymechanism
to each unit. is implies that game AI only has access to observational data of those
parts of the environment that are visible to its own units (illustrated in Figure .).
When the game AI’s information is restricted to what its own units can observe, we
call this an ‘imperfect-information environment’.Whenwe allow the gameAI to access
all information, regardless whether it is visible to its own units or not, we call this a
‘perfect-information environment’.

Tech tree: S employs a so-called tech tree (Adams andRollings, ) that represents
the possible paths of in-game ‘research actions’ that a player of the game can take.e
name ‘tech tree’ is common terminology in the domain of video games, and is derived
from ‘technology tree’. A tech tree is a directed acyclic graph. For all players of the
game, the employed tech tree is identical. e manner in which each player traverses
the tree is independent from the in-game actions of other players. Each player starts
in the root of the tech tree. By traversing the tech tree, the particular player will be
provided with advanced levels of technology. For instance, by performing certain in-
game research actions, a player may be provided with more advanced aircraft units.
Traversing the tech tree is generally advantageous, yet there is a cost for doing so in
time and in in-game resources.
A concise representation of the tech tree of S is provided in Figure .. In the
S game, three levels of technology are predefined: Level , Level , and Level .
At the start of the game, each player can only construct Level- units and Level- buil-
dings. Later in the game, after a player has performed the required in-game research,
advanced units and buildings of Level  and Level  become available to the particular
player. For instance, a player may choose to focus on constructing the most advanced
Level- k-bot units. However, by doing so, a player invests a significant amount of time
and in-game resources, that cannot be spent on constructing other potentially helpful
units, such as Level- tanks and Level- aircrafts.

5.2 | An evaluation function for SPRING 75

Figure .: Agameobservation in the S game.Units controlled by the gameAI are currently resi-
ding in the highlighted region. In an imperfect-information environment, only information
in the highlighted region is available. In a perfect-information environment, information
for both the highlighted and the grey region is available.

Figure .: Concise representation of the tech tree of S.

76 The evaluation function

.. Towards a case base of game knowledge
For the purpose of establishing our evaluation for the S game, we will create a case
base of game knowledge. We define game knowledge as a set of observable features of the
environment at a certain point in time. Our procedure of gathering feature data in the case
will be described in Subsection ... Subsequently, our procedure to establishing an evalu-
ation function follows the two steps described in Subsection .., viz. (A) feature definition
and selection, and (B) feature weighting. e implementation of the two steps is described
below.

A. Feature definition and selection

In Subsection .. we discussed that determining which features to make available to an
evaluation function is regarded as an important but difficult task. We observed that the
task is usually achieved by a researcher that exploits expert knowledge of the game. For
instance, in the video-gameprogramT, highly accurate evaluation functions have been
established solely on the basis of manually defined features (iery and Scherrer, a,b).
Wenote that any set of game featuresmay be incomplete, andmay thereby limit the accuracy
of the evaluation function. Yet, as a first step to establishing an evaluation function for the
S game, we accompanied our predecessors in exploiting our expert knowledge of the
game, and determine by hand which features to make available to the evaluation function.

Our expert knowledge of S dictates that in the game the evaluation function
should foremost be capable of estimating () the phase of the game, () thematerial strength,
and () the commander safety. In order to provide accurate estimates, the evaluation func-
tion needs to take into account the environment visibility. ese considerations lead us to
define four features, on the basis of which the three estimates can be calculated. e four
features are as follows.

. Phase of the game. e feature represents the phase of the game (e.g., the opening
or endgame). It is selected to acknowledge that certain behaviour is only important
at distinct moments in the game. e value of the feature can be inferred from the
presence of particular units that are operating in the game environment. We consider
five distinct game phases. is is discussed in more detail in Subsection ...

. Material strength.e feature represents the strength of the player’s army, in compa-
rison to the strength of the opponent’s army. It is selected to acknowledge the strategic
nature of the game. e value of the feature can be inferred from the number of units
observed of each of the  available unit types. is is discussed in more detail in
Subsection ...

. Commander safety.e feature represents the safety of the player’s Commander unit,
in comparison to the safety of the opponent’s Commander unit. It is selected to ack-
nowledge that a S game is won by the player who first destroys the Commander
unit of the opponent. e value of the feature can be inferred from the number of
enemy units that are located in the vicinity of the Commander units. is is discussed
in more detail in Subsection ...

5.2 | An evaluation function for SPRING 77

. Environment visibility. e feature represents the percentage of the game environ-
ment that is visible to the friendly player. It is selected to acknowledge that, despite
partial observability of the environment, the evaluation function needs to rate accu-
rately the game state. e value of the feature can be observed directly.

For convenience of the reader, in Appendix B we will provide an overview of all features
that are used in the three main components of case-based adaptive game AI.

B. Feature weighting

Once that the game features are defined, we can gather feature data in the case base. We
will exploit data that is gathered in the case base for the purpose of weighting the evaluation
function. As we will describe in the next subsections, the defined features are incorporated
into the evaluation function as two terms (i.e., () material strength, and () commander
safety), and as a parameter to represent the phase of the game. We will optimise the weights
for each term of the evaluation function. Also, we will learn weights for each of the 
available unit types (incorporated into the material strength term). We refer to the entire
process as ‘tuning the evaluation function’. e implemented procedure to gathering feature
data and tuning the evaluation function will be described in detail in Subsection ...

With regard to tuning the evaluation function, one may assume that the accuracy of the
evaluation function is highest when perfect information is used to tune it. erefore, we
will tune our evaluation function based on observations gathered in a perfect-information
environment. In Subsection .. we will create a case base that consists of three different
data sets: the first containing training data gathered in a perfect-information environment,
the second containing test data gathered in a perfect-information environment, and the third
containing test data gathered in an imperfect-information environment. e latter test set is
used to determine how well an evaluation function that is trained in a perfect-information
environment, can be applied to an imperfect-information environment.

.. Our evaluation function

Derived from our expert knowledge of the S game (see Subsection ..), we decided
for an evaluation function that includes a parameter to represent the phase of the game, a
term to estimate the material strength, and a term to estimate the commander safety. We
will use the evaluation function as a predictor of the final outcome of a game.

To allow the evaluation function to deal with imperfect information inherent to the
S environment, we assume that is it possible to map reliably the imperfect feature
data, to a prediction of the perfect feature data. Our straightforward implementation of this
mapping is to scale linearly the number of observed opponent units to the non-observed
region of the environment. If the opponent units are homogenously distributed over the en-
vironment, the evaluation function applied to an imperfect-information environment will
produce results close to those of the evaluation function applied to a perfect-information
environment.

78 The evaluation function

e considerations mentioned above lead us to denote our evaluation function as fol-
lows.

v(p) = wpv1 + (1−wp)v2 (.)

wherewp ∈ [0, 1] is a free parameter to determine the weight of each term vn of the evalu-
ation function, where n ∈ {1, 2}, and where p ∈ {1, 2, 3, 4, 5} is a parameter that represents
the current phase of the game (see Subsection ..). e evaluation function incorpora-
tes two evaluation terms, the term v1 that represents the material strength (see Subsec-
tion ..), and the term v2 that represents the commander safety (see Subsection ..).

.. Phase of the game
eparameter p (see Equation .) represents the current phase of the game.e parameter
is incorporated to acknowledge that certain behaviour may only be important at distinct
moments in the game. For instance, at the start of the game it may be important to construct
a strong army, where near the end of the game it may be more important to defend the
Commander unit.e parameter value is derived from data on the phase of the game, which
is gathered in the case base (see Subsection ..-A).

Analogously to how one may distinguish game phases in classic games (e.g., opening,
middlegame, and endgame in the game of chess), one may distinguish game phases in RTS
games. Modern RTS games typically progress through several distinct phases. e phase of
an RTS game can be derived straightforwardly from the observed traversal in the tech tree
of the game. is use of phases is similar to the background knowledge that Ponsen and
Spronck () introduced in their work, and was used later in Aha et al. ().

We recall that in the S game three levels of technology are predefined (see Sub-
section ..). To distinguish game phases in the S game, we map the three predefined
levels of technology to game phases. In addition, to distinguish betweenwhen tech levels are
“new”, and when they are “mature”, we also regard the transition from one level of techno-
logy to another as a game phase. e maturity of a tech level is indicated by the presence of
units with a relatively long construction time. For the S game, this leads us to define
five game phases. e five phases are described below.

Phase : Level- buildings observed.
Phase : Level- units observed that have a construction time ⩾  in-game time units.
Phase : Level- buildings observed.
Phase : Level- units observed that have a construction time⩾  in-game time units.
Phase : Level- buildings observed.

.. Material strength
e evaluative term v1 (see Equation .) represents the material strength. e material
strength is expressed by the number of units in the army of the two players, as well as by the
weight (i.e., relative importance) of each unit in the particular army.e term is incorporated

5.3 | Validating the evaluation function 79

to acknowledge the strategic nature of the game. It utilises data on material strength and
environment visibility, which is gathered in the case base (see Subsection ..-A). Term v1
is denoted by

v1 =
∑
u

wu(cu1
−
ou2

R
) (.)

wherewu is the experimentally determined weight of the unit u, cu1
is the number of own

units of type u that the game AI has, ou2
is the observed number of opponent’s units of type

u, and R ∈ [0, 1] is the fraction of the environment that is visible to the game AI.

.. Commander safety
e evaluative term v2 (see Equation .) represents the safety of the current tactical posi-
tion. e safety is expressed by the number of enemy units that are located in the vicinity of
the Commander unit. e term is incorporated to acknowledge that a S game is won
by destroying the opponent’s Commander unit. It utilises data on commander safety and
environment visibility, which is gathered in the case base (see Subsection ..-A). Term v2
is denoted by

v2 =
∑
r∈d

wr(
or2
Rr2

−
or1
Rr1

) (.)

wherewr is the experimentally determined weight of the radius r, or2 is the observed num-
ber of own units of the game AI within a radius r of the opponent’s Commander unit,
Rr2 ∈ [0, 1] is the fraction of the environment that is visible to the opponent within the
radius r, or1 is the observed number of units of the opponent within a radius r of the game
AI’s Commander unit, Rr1 ∈ [0, 1] is the fraction of the environment that is visible to the
game AI within the radius r, and d is the set of experimentally determined game-unit radii
{500, 1000, 2000}.

5.3 Validating the evaluation function

is section reports on two experiments that validate the evaluation function in the S
game. We are foremost interested in the performance of the evaluation function. In the
experiments, we therefore measure the performance of the evaluation function in actual
play. e performance is expressed by the accuracy of the function in predicting the final
outcome of a game. A high accuracy indicates that the established evaluation function may
be suitable for incorporation into case-based adaptive game AI.

In the remainder of the section, we first describe the experimental setup (..). Second,
we discuss how the performance of the evaluation function is assessed by means of two
measures (..). ird, we give the measured performance (..). Fourth, the section is
concluded by a discussion of the results (..).

 A ‘game-unit’ is an internal distance unit that is employed in the S game. For instance, the size of a
typical game map in the S game is  x  game units.

80 The evaluation function

Friendly player Opponent player Training set Test set (perf. inf.) Test set (impf. inf.)

AAI (cb) AAI (original)   
AAI (cb) TSI   
AAI (cb) CSAI   
AAI (cb) RAI -  

Table .: e number of S games gathered in the case base.

.. Experimental setup

e general experimental setup is as follows. First, in the case base we gather feature data
of a multitude of games. Subsequently, we utilise this feature data for tuning our evalua-
tion function. Next, with the established evaluation function, we announce two experiments
that will test the function. In the first experiment, we test the function while operating in a
perfect-information S environment. In the second experiment, we test the function
while operating in an imperfect-information S environment.

Below, the three steps, viz. (A) gathering feature data, (B) tuning the evaluation function,
and (C) testing the evaluation function, are discussed in more detail.

A. Gathering feature data

For establishing the evaluation function, in the case base we gather feature data of games
where two game AIs are pitted against each other. As multiple S game AIs are avai-
lable, we first have to select a game AI that is suitable for our experiments. We used one
open-source game AI, which the author of the game AI labelled ‘Alexander AI’ (‘AAI’) (Sei-
zinger, ). We enhanced this game AI with two abilities, viz. () the ability to gather
feature data in a case base, and () the ability to disregard limited environment visibility, so
that perfect information on the environment is available. We note that the decision-making
process of the enhanced AAI is identical to that of the original AAI; exhibited behaviour in
actual play is not affected by the enhancements. We refer to the enhanced AAI, that gathers
feature data in a case base, as ‘AAI (cb)’. As opponent game AIs, we used the original AAI, as
well as three other AIs, namely ‘TSI’ (Baran and Urbanczyk, ), ‘CSAI’ (Perkins, ),
and ‘RAI’ (Reth, ). A description of these game AIs is provided in Appendix A.. Ta-
ble . lists the number of games from which we built the case base. e case base consists
of three sets. e first set is a training set containing data gathered in a perfect-information
environment. e remaining two sets are test sets containing data gathered in a perfect and
imperfect-information environment, respectively.

e data gathering process was as follows. During each game, feature data was gathe-
red every  in-game cycles, which corresponds to the decision-making frequency of AAI.
With  in-game cycles per second this resulted in feature data being gathered every .
seconds. e games were played on the default map of the S game, the map SmallDi-
vide (it will be illustrated in Figure .). e map is symmetrical, and has no water areas. All
observed games were played under identical conditions.

5.3 | Validating the evaluation function 81

B. Tuning the evaluation function

Feature data that is gathered in the case base, is utilised for tuning the evaluation function.
e process consists of two steps. First, we learn the unit-type weightwu (see Equation .)
for each of the available  unit types of the S game. Second, we optimise the term
weightswp for each phase of the game (see Equation .). Both steps are discussed below.

To learn the unit-type weightswu of the evaluation function, we used a MatLab imple-
mentation of TD-learning (Sutton, ). ough the choice for a particular learning algo-
rithm is immaterial as we are establishing a proof of concept, our choice for TD-learning is
motivated by findings in the literature.at is, our application of TD-learning in the S
game is analogous to its application by Beal and Smith () for determining piece values in
chess. Unit-type weights were learned from feature data gathered with perfect information,
that is contained in the training set in the case base (see Table .). e learning rate α was
set to ., and the recency parameter λ was set to .. Both parameter values were chosen
in accordance with the research by Beal and Smith (). e unit-type weights were ini-
tialised to . before learning started. For our setup, weights of the radii defined in the set
d (see Subsection ..) were chosen by the experimenter as . for a radius of , and
. and . for a radius of  and , respectively.

In addition to learning the unit-type weights, we optimised the term weights wp for
each phase of the game. Term weights were determined with the gradient descent optimisa-
tion algorithm (Snyman, ). ough the choice for a particular optimisation algorithm
is immaterial as we are establishing a proof of concept, we chose for gradient descent op-
timisation out of pragmatic considerations. A step value of . was used initially to allow
the algorithm to explore the state space using random jumps. Gradually, the step value was
decreased to ., to encourage the algorithm to perform a local optimisation at the end.
Term weights for each phase were initialised to a neutral value of . before optimisation
started.

For convenience of the reader, in Appendix C we will provide an extensive description
of the tuned evaluation function.

C. Testing the evaluation function

Wedetermined the performance of the evaluation function in two experiments.e first ex-
periment tests the evaluation function in an perfect-information environment. To this end,
game observations that are gathered in the set ’test set (perf. inf.)’ are used (see Table .).
e second experiment tests the evaluation function in an imperfect-information environ-
ment. To this end, game observations that are gathered in the set ‘test set (impf. inf.)’ are
used. For each game observation that is gathered, the evaluation function attempts to rate
the state of the game. e evaluation value is an implicit prediction of the final outcome of
the game. A positive evaluation value indicates that the friendly player is winning the game.
A negative evaluation value indicates that the opponent player is winning the game. A neu-
tral evaluation function of zero indicates that the game resides in a draw position. How we
measure the performance of the evaluation function is discussed next.

82 The evaluation function

.. Two measures for performance assessment
We defined two measures to assess the performance of the evaluation function operating
in the S game: () the final prediction accuracy, which reflects the function’s accuracy
at the end of the game, and () the turning points, which reflect the function’s accuracy
throughout the play of the game. Both are discussed below.

Final prediction accuracy: We defined the measure ‘final prediction accuracy’ as the per-
centage of games of which the outcome is predicted correctly just before the end of
the game. A high final prediction accuracy indicates that the evaluation function has
the ability to evaluate correctly the state of the game.

Turning points: We defined the measure ‘weak turning point’ as the game time at which
at least  of the outcomes of the test games is predicted correctly. We defined the
measure ‘normal turning point’ and ‘strong turning point’ as the game time at which
at least  and  of the outcomes of the test games is predicted correctly, res-
pectively. A low value of a turning point indicates that the evaluation function can
correctly evaluate a game’s state early in the game.
We note that not all games last for an equal amount of time. To determine the turning
points, we scaled all games to one hundred per cent of the game time of the longest
game. is is implemented by averaging over the outcome predictions made for each
game observation. As a result, the lowest (i.e., best) turning point that can be obtained
is , and the highest (i.e., worst) turning point that can be obtained is .

.. Measured performance
is subsection discusses the results of the twoperformed experiments.efirst experiment
tests the evaluation function in a perfect-information environment. e second experiment
tests the evaluation function in an imperfect-information environment.e performance of
the evaluation function is measured in terms of () final prediction accuracy, and () obtai-
ned turning points.

e evaluation function used is qualitatively discussed in terms of (A) the unit-type
weights that, when tuning the evaluation function, were learned for the  available unit
types (see Subsection ..). Also, we present the results of (B) optimising the term weights
for each of the five phases of the game.en, themeasured performance is reported.at is,
we give (C) the final prediction accuracy results, and subsequently, we give (D) the turning
point results.

A. Learned unit-type weights

When gathering feature data, we found that of the  available unit types of the S
game,  unit types were used. e remaining unit types were not used due to the AIs’
preferences for different unit types, and due to the characteristics of the map on which the
data was gathered. For instance, on a map without water areas it is not possible to build
ship units. e TD-learning algorithm learned the weights wu (see Equation .) for these

5.3 | Validating the evaluation function 83

Unit type Description Weight

 Advanced Metal Extractor (Building) .
 under Bomber (Combat unit) .
 Metal Storage (Building) .
 Freedom Fighter (Combat unit) .
 Medium Assault Tank (Combat unit) .
… …
 Minelayer / Minesweeper with Anti-Mine Rocket (Combat unit) -.
 Advanced Solar Collector (Building) -.
 Light Amphibious Tank (Combat unit) -.
 Energy Storage (Building) -.
 Defender Anti-Air Tower (Building) -.

Table .: Learned unit-type weights.

 unit types. A summary of ten learned weights is given in Table .. e table lists the
five unit types with the largest learned weight, and the five unit types with the smallest
learned weight. A full list is given in Appendix C. Below we give a qualitative discussion
of the learned weights.

e table reveals that the highest weight has been assigned to the Advanced Metal Ex-
tractor. is result confirms our expert knowledge with the game. When the AI destroys an
Advanced Metal Extractor, then the opponent’s ability to gather resources reduced, and on
top of that it is also likely that the AI has already penetrated the opponent’s defences, since
the Advanced Metal Extractor is typically well protected and resides close to the Comman-
der unit. is implies that, when the AI destroys an Advanced Metal Extractor, it is a good
indicator that the game AI in question is likely to win the game.

In addition, the table reveals that some unit types obtained weights less than zero. is
result confirms our expert knowledge with the game. In our experimental setup, several
unit types are of little use to a player, and are actually a waste of in-game resources. For
instance, the map used in our experiments contained no water areas. As a result, the Light
Amphibious Tank unit will indeed be of limited use.

B. Optimising term weights results

Table . displays the prediction accuracy before and after optimising the term weightswp

for each phase of the game (see Equation .). e first column lists the phase of the game
in which the optimisation took place. e second column lists the total number of game ob-
servations done in the corresponding phase of the game. e third and fourth column lists
how many game observations the outcome has been predicted accurately before optimis-
ing and after optimising, respectively. e fifth column lists the increase (in percentage) in
prediction accuracy after optimising.

e table reveals that after optimising the term weights, the evaluation function’s ability
to predict the outcome of the game increases for all phases of the game.emost substantial

84 The evaluation function

Phase Game observations Correct (before) Correct (after) Incr. ()

 , , , .
 , , , .
 , , , .
 , , , .
 , , , .

Table .: Optimising term weights results.

Final prediction accuracy
Friendly player Opponent player Perfect-inf. env. Imperfect-inf. env.

AAI (cb) AAI (original)  
AAI (cb) TSI  
AAI (cb) CSAI  
AAI (cb) RAI  

Average  

Table .: Final prediction accuracy results.

increase in prediction performance is observed in phase three (.), and in phase one
(.). ese two phases are the phases in which the game mostly resides.

C. Final prediction accuracy results

Table . lists the final prediction accuracy of the evaluation function. For the evaluation
function operating in a perfect-information environment, the final prediction accuracy is
 on average. For the evaluation function operating in an imperfect-information envi-
ronment, the final prediction accuracy is  on average.

We note that in the S game it is not evident that the evaluation function achieves
a high prediction accuracy just before the game is finished. Namely, the game is finished
when a player’s Commander unit is destroyed. is can occur suddenly, for instance, by an
unlucky move of the Commander unit, or by a powerful opponent unit that is able to dest-
roy the Commander with a single shot. Still, in these circumstances our evaluation function
achieves a high prediction accuracy, which can be attributed to the term to evaluate the com-
mander safety. From these results, wemay conclude that the established evaluation function
provides an effective basis for evaluating a game’s state.

D. Turning point results

In Table . the obtained turning points are given for the evaluation function applied in
a perfect-information environment. In Table . the obtained turning points are given for
the evaluation function applied in an imperfect-information environment. Note that a low
turning point indicates that the evaluation function can correctly evaluate a game’s state

5.3 | Validating the evaluation function 85

Turning points
Friendly player Opponent player Weak t.p. Normal t.p. Strong t.p

AAI (cb) AAI (original)   
AAI (cb) TSI   
AAI (cb) CSAI   
AAI (cb) RAI   

Average   

Table .: Turning point results obtained for the evaluation function applied in a perfect-information
environment.

Turning points
Friendly player Opponent player Weak t.p. Normal t.p. Strong t.p

AAI (cb) AAI (original)   
AAI (cb) TSI   
AAI (cb) CSAI   
AAI (cb) RAI   

Average   

Table .: Turning point results obtained for the evaluation function applied in an imperfect-
information environment.

early in the game. We observe that the weak turning point is on average  in a perfect-
information environment, and is on average  in an imperfect-information environment.
is result reveals that the evaluation function makes fairly accurate predictions before half
of the game is played.

An interesting observation is that on average, the weak turning point in an imperfect-
information environment is smaller (i.e., better) than the weak turning point in a perfect-
information environment. e phenomenon can be explained straightforwardly. Relatively
early in the game, little information is available to the evaluation function operating in
an imperfect-information environment. Still, using this little information, the function at-
tempts to estimate the actual, perfect information. Based on this estimate, the final outcome
of the game is being predicted. Due to lucky circumstances (e.g., correctly overestimating
the strength of the opponent), this prediction may in fact be more accurate than the predic-
tion that is based on actual game observations. An instance of the phenomenon is illustrated
in the lower-left graph of Figure ., whose legend will be described below.

e normal turning point is on average  and  in a perfect-information and imperfect-
information environment, respectively. e strong turning point is on average  and 
in a perfect-information and imperfect-information environment, respectively. ese re-
sults reveal that when more environment information becomes available in an imperfect-
information environment, the performance of the evaluation function approaches that of the
function operating in a perfect-information environment. is is also shown by Figure .,

86 The evaluation function

(a) AAI (cb) - AAI (original) (b) AAI (cb) - TSI

(c) AAI (cb) - CSAI (d) AAI (cb) - RAI

Figure .: Outcomes predicted correctly as a function over time. e black line represents the pre-
diction performance of the evaluation function operating in a perfect-information envi-
ronment. e grey line represents the prediction performance of the evaluation function
operating in an imperfect-information environment.

which displays the percentage of outcomes predicted correctly as a function over time.
e figure gives the prediction accuracy of the evaluation function operating in a perfect-
information environment (the black line), aswell as the prediction accuracy of the evaluation
function operating in an imperfect-information environment (the grey line).

.. Discussion of the results
Experiments that tested our evaluation function showed that the function was able to pre-
dict accurately the outcome of the S game. Naturally, there are possibilities for further

5.4 | Chapter conclusions 87

improvements. For instance, the accuracy of the evaluation function may be restricted by
the selection of game features that were incorporated into the function. In addition, the ac-
curacy of the evaluation function will depend on the effectiveness of tuning the evaluation
function. Particularly, the accuracy will depend on the training data that is provided to the
tuning process. For example, our results showed some signs of overfitting, whichmight have
resulted from the fact that most of the feature data was gathered from games that are played
against the original AAI opponent. To avoid overfitting, we recommend gathering data from
training games played against a relatively large number of different types of opponents on
different types of maps.

Alternatively, one may choose to tune a distinct evaluation function for each known op-
ponent. If the gameAI is able to determine which opponent it is pitted against, it can use the
appropriate evaluation function to evaluate the state of the game. However, the alternative
requires the game AI to classify accurately the opponent player. is is a difficult task.

5.4 Chapter conclusions

In this chapter we discussed the function that rates the state of a game, viz. the evaluation
function.We outlined our evaluation function for the complex S game.e evaluation
function takes into account the phase of the game, and incorporates two terms to evaluate
the game state, viz. () a term tomeasure thematerial strength, and () a term tomeasure the
commander safety. Experiments performed in the S game revealed that, just before
the game’s end, the evaluation function was able to predict correctly the outcome of the
game with an accuracy that approached one hundred per cent. Considering that a S
game may be won suddenly, and thus the outcome of the game is difficult to predict, this
is a satisfactory result. In addition, the evaluation function made fairly accurate predictions
before half of the game was played, operating in both a perfect and imperfect-information
environment. From these results, we may conclude that our evaluation function predicts
accurately the outcome of a S game.

6
The adaptation mechanism

In this chapter we concentrate on the adaptation mechanism, one of the three main compo-
nents of case-based adaptive game AI. e adaptation mechanism allows game AI to adapt
online to game circumstances. In our investigation of an adaptation mechanism for video
game AI, we focus particularly on establishing a mechanism that addresses the concerns of
game developers with regard to adaptive game AI, i.e., we investigate a mechanism capable
of adapting rapidly and reliably to game circumstances.

Chapter  is organised as follows. We first discuss adaptation mechanisms for video
game AI (Section .). Subsequently, we describe our mechanism for online adaptation of
video game AI (Section .). Next, we report on the validation of the adaptation mechanism
(Section .). Finally, we present the chapter conclusions (Section .).

6.1 Adaptation mechanisms

For the purpose of the present investigation, we reiterate that an adaptation mechanism is
a mechanism that allows the game AI to adapt online to game circumstances. In video ga-
mes, each game character feeds the game AI with data on its current situation, and with the
observed results of its actions. e game AI adapts by processing the observed results, and
generates actions in response to the character’s current situation. An adaptationmechanism
is incorporated into gameAI to determine what the best way is to adapt the AI. For instance,

is chapter is based on the following three publications.
) Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (a). Rapid adaptation of video game

AI. In Botti, V., Barella, A., and Carrascosa, C., editors, Proceedings of the th International Conference on
Intelligent Games and Simulation (GAMEON’), pages –. EUROSIS-ETI, Ghent University, Ghent,
Belgium.

) Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (b). Rapid adaptation of video game
AI (Extended version of a). In Hingston, P. and Barone, L., editors, Proceedings of the IEEE 
Symposium on Computational Intelligence and Games (CIG’), pages –. IEEE Press, Piscataway, New
York, USA.

) Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (b). Rapid and reliable adaptation of video
game AI. IEEE Transactions on Computational Intelligence and AI in Games, ():–.

90 The adaptation mechanism

reinforcement learning may be applied to assign rewards and penalties to certain behaviour
determined by the game AI.

In the motivation of our research, we discussed the general goal of adapting rapidly and
reliably to game circumstances (see Chapter ). In the remainder of this section, we describe
how the general goal affects the design considerations of our adaptation mechanism. We
first describe the aim of exploiting observations gathered in a case base for the purpose of
enabling rapid adaptation of game AI (..). Subsequently, we discuss how a case-based
approach to game adaptation may be used to increase the reliability of game AI (..).

.. Rapid adaptation

In recent years researchers have increasingly adopted case-based reasoning (CBR) and case-
based planning (CBP) approaches in their work in order to deal with the complexities of
video games. Often, these case-based approaches are focussed on decreasing the time re-
quired to learn effective behaviour in online play. For instance, Sharma et al. () devel-
oped an approach for achieving transfer learning in the M game, by using a hybrid
case-based reasoning and reinforcement learning algorithm. Auslander et al. () used
case-based reasoning to allow reinforcement learning to respond as rapidly as possible to
changing circumstances in the U T domination game.

Often, the focus of these approaches lies on learning effective behaviour. Yet, it is not
uncommon that a game has finished before any effective behaviour could have been esta-
blished, or that the game characters in a game do not live sufficiently long to benefit from
learning. As a result, it is difficult for the players of a video game to detect and understand
that the game AI is learning. is renders the benefits of online learning in video games
subjective and unclear (Rabin, ).

erefore, our adaptation mechanism is not so much focussed on learning, but on ex-
ploiting game observations stored in the case base for the purpose of instant application
in game circumstances. We build upon () the ability to gather and identify relevant game
observations, and () the ability to apply effectively these observations in similar game cir-
cumstances. Corresponding case-based approaches have been applied to various game gen-
res (see Aha et al. () for an overview). We observe that often the focus lies on relatively
simple tasks in relatively simple environments, e.g., predicting the next action of a player
in S I (Fagan and Cunningham, ). However, in recent years, case-based
research has expanded into the domain of RTS games, albeit predominantly to relatively
simple instances of the genre. For instance, Aha et al. () developed a retrieval mecha-
nism for tactical plans in the W game, that built upon domain knowledge generated
by Ponsen and Spronck (). Ontañón et al. () and Mehta et al. () established a
framework for case-based planning on the basis of annotated knowledge drawn from expert
demonstrations in the W game. Louis and Miles () applied case-injected genetic
algorithms to learn resource allocation tasks in RTS games. Baumgarten et al. () esta-
blished a mechanism for simulating human gameplay in strategy games using a variety of
AI techniques, including, among others, case-based reasoning.

6.1 | Adaptation mechanisms 91

.. Reliable adaptation
For video games it is difficult to create adaptive game AI that is reliable, i.e., game AI in
which adaptive behaviour is established in a controlled and predictable manner. One way
of increasing the reliability of an adaptation mechanism is to incorporate it in a framework
for case-based adaptation. In such a framework, adaptations are performed on the basis of
game observations drawn from a multitude of games. e effect of the game adaptations,
therefore, can be inferred directly from previous observations that are gathered in the case
base. We incorporate our adaptation mechanism in a framework for case-based adaptation,
i.e., the adaptation mechanism adapts to game circumstances by exploiting observations
gathered in the case base.

An important requirement, to this end, is an evaluation function that can rate adequately
the state of a game. From results of experiments discussed in Chapter , we have already
concluded that our evaluation function is able to predict accurately the outcome of a S
game. erefore, the established evaluation function is incorporated in the implementation
of our adaptation mechanism.

In our research, we apply the adaptation mechanism foremost for the purpose of (A)
adapting for effective behaviour, while aspiring that adaptations are performed reliably. An
additional application of the adaptation mechanism is (B) difficulty scaling. Both applicati-
ons are discussed next.

A. Adapting for effective behaviour

As indicated in Chapter , in a case-based framework the game AI may be expected to be-
come robust in dealing with non-determinism, since the case base can be used as a model
to predict the effect of game adaptations. For adapting game AI for effective behaviour in a
reliable fashion, we propose that the adaptationmechanism is adjusting a pre-existing game
AI (cf. Aha et al. (), Sugandh et al. (), and Ontañón et al. ()), on the basis of a
case base drawn from observations of a multitude of games. We note that this is a contrast
with most previous approaches to game AI, that do not tie in with a pre-existing game. at
is, in those approaches the adaptationmechanism itself is ‘being’ the gameAI. An advantage
of the adaptation mechanism tying in with a pre-existing game AI, is that it enables game
developers to control and predict with relative accuracy the behaviour that is exhibited by
the game AI. In addition, the case base can be utilised for providing feedback on distinct
strengths and weaknesses of a player, and can provide inexpensive insight into the balance
of a game. us, it can help in testing and debugging the game.

Aplain example of adapting for effective behaviour is as follows. Assume that a particular
game developer prefers predictable game adaptations over highly effective game adaptati-
ons, and is considering to execute one of two game strategies. On the one hand, the case
base indicates that in a similar game state executing strategy ‘X’ has previously led to the
targeted outcome in  per cent of the cases. On the other hand, executing strategy ‘Y’ has
previously led to an outcome slightly below the target value, but has effectively led to that

 We note that ‘case based adaptation’ differs from the frequently studied CBR task of ‘case adaptation’. In the
thesis, with case-based adaptation we refer to case-based learning for adapting game AI.

92 The adaptation mechanism

outcome in  per cent of the cases. Here, the previous observations that are gathered in the
case-base enable the adaptation mechanism to make an informed decision on the preferred
strategy. Considering the preference of the game developer for predictable game adaptati-
ons, the adaptation mechanism will select strategy ‘Y’. We note that the preference for selec-
ting game strategies is not inherent to our mechanism, but instead is free to be determined
by the game developer.

B. Difficulty scaling

An adaptation mechanism may potentially be applied to adapt automatically the challenge
that a game poses to the skills of a human player. is is called difficulty scaling (Spronck
et al., a), or alternatively, challenge balancing (Olesen et al., ). When applied to
game AI, difficulty scaling aims usually at achieving an “even game”, i.e., a game wherein the
playing strength of the computer and the human player match.

In most games, the only implemented means of difficulty scaling is typically provided by
a difficulty setting, i.e., a discrete parameter that determines how difficult the game will be.
e purpose of a difficulty setting is to allow both novice and experienced players to enjoy
the appropriate challenge that the game offers. Usually the parameter affects plain in-game
properties of the game opponents, such as their physical strength. Only in exceptional cases
the parameter influences the strategy of the opponents. Consequently, even on a “hard”
difficulty setting, opponents may exhibit inferior behaviour, despite their, for instance, high
physical strength. Because the challenge provided by a game is typically multifaceted, it is
tough for the player to estimate reliably the particular difficulty level that is appropriate for
himself. Furthermore, generally only a limited set of discrete difficulty settings is available
(e.g., easy, normal, and hard). is entails that the available difficulty settings are not fine-
tuned to be appropriate for each player.

In recent years, researchers have developed advanced techniques for difficulty scaling of
game AI. Demasi and Cruz () used coevolutionary algorithms to learn game charac-
ters that best fit the challenge level of a human player. Hunicke and Chapman () ex-
plored difficulty scaling by controlling the game environment (i.e., controlling the number
of weapons and power-ups available to a player). Spronck et al. (a) investigated three
methods to adapt the difficulty of a game by adjusting automatically weights assigned to pos-
sible game strategies. In related work, Yannakakis and Hallam () provided a qualitative
and quantitative method for measuring player entertainment in real time.

Our adaptation mechanism offers a straightforward means to difficulty scaling. Gener-
ally, we prefer to use the adaptation mechanism that exploits the case base of game ob-
servations for the purpose of obtaining more effective play. Analogously, the adaptation
mechanism can be applied for the purpose of obtaining a predefined target fitness value.
For instance, the adaptation mechanism could exploit information of the fitness progress of
previously observed, similar games, to obtain a draw position instead of a winning position.

6.2 | An adaptation mechanism for SPRING 93

Figure .: General adaptation procedure. e procedure consists of three steps, (A) offline proces-
sing, (B) initialisation, and (C) online adaptation. e three steps are composed of five
components. e components are game indexing, clustering of observations, initialisation
of game AI, similarity matching, and online strategy selection (see text for details).

6.2 An adaptation mechanism for SPRING

In this section we describe our adaptation mechanism for S. In case-based adaptive
game AI, domain knowledge collected in a case base is exploited by the adaptation mecha-
nism for adapting online the game AI to game circumstances.

e remainder of this section is organised as follows. First, we outline the general pro-
cedure of the adaptation mechanism (..). Subsequently, the mechanism is discussed in
detail in Subsection .. to .., the topics being game indexing, clustering of observati-
ons, initialisation of game AI, similarity matching, and online strategy selection. e topics
refer to five components of the adaptation mechanism.

.. General adaptation procedure
We define our adaptation mechanism as follows. It consists of three steps: (A) offline pro-
cessing, (B) initialisation, and (C) online adaptation. e general adaptation procedure, illu-
strated in Figure ., is described below.

In step A, game observations that are gathered in the case base are processed offline.e
purpose of step A is to generalise over the gathered observations.e offline processing step
incorporates components () to index gathered games (described in Subsection ..), and
() to cluster observations (described in Subsection ..). We define a game observation as

94 The adaptation mechanism

an observation on the state of the game. Of each game observation, a vector of feature data
is gathered in the case base. is process is described in more detail in Subsection ..-A.

In step B, the initialisation of the gameAI is performed.epurpose of step B is to ensure
that game AI is effective from the onset of a game. To this end, the step incorporates one
component which initialises the game AI with a previously observed, effective game stra-
tegy (described in Subsection ..). For the present experiments, we define a game strategy
as the configuration of parameters of the game AI that determine strategic behaviour. e
term ‘opponent strategy’ is used analogous to game strategy, to reflect that it concerns a
game strategy that is employed by the opponent player. In the game AI that we will experi-
ment with, we found  parameters that determine the game strategy of the game AI. e
parameters affect the gameAI’s behaviour on a high, strategic level, and not on a low, tactical
level. For example, the parameter ‘aircraft_rate’ determines on a high level how often aircraft
units should be constructed. How exactly the constructed aircraft units should be employed
is decided by lower-level game AI. All  parameters are described in Appendix D.

In step C, the game AI is adapted online. e purpose of step C is to adapt the game AI
in such a way that it exhibits behaviour that is effective in actual game circumstances. e
online adaptation step incorporates components () to perform similarity matching (descri-
bed in Subsection ..), and () to perform online strategy selection (described in Subsec-
tion ..). e component to perform similarity matching is supportive for the component
to perform online strategy selection. In addition, the component to perform online strategy
selection exploits the game indices that were established offline in step A, as well as the
clustering of observations that was established offline in step A.

.. Game indexing
e component ‘game indexing’ is employed in step A. As calculating the game indices is
computationally relatively expensive, as all stored gameobservations need to be processed, it
is performed offline (in step A).e calculated game indices are exploited for online strategy
selection (in step C).

We define a game’s index as a vector of fitness values, containing one entry for each ob-
served game state. e fitness values represent the desirability of the observed game states.
To calculate the fitness value of an observed game state, we use the previously established
evaluation function (see Chapter ).

.. Clustering of observations
e component ‘clustering of observations’ is employed in step A. As clustering of obser-
vations is computationally relatively expensive, as all stored game observations need to be
processed, it is performed offline (in step A). e established clustering of observations is
exploited for online strategy selection (in step C).

 We surmise that adaptation of the game AI on a high, strategic level will affect most significantly the outcome
of the game. Still, also on a low, tactical level the gameAImay be adapted automatically, based on previous game
observations. For instance, Szczepanski and Aamodt () have already established a case-based reasoning
approach to control the actions of individual units in the real-time strategy game W .

6.2 | An adaptation mechanism for SPRING 95

As an initial means to cluster similar observations, we apply the standard k-means clus-
tering algorithm (Hartigan and Wong, ). e metric that expresses an observation’s po-
sition in the cluster space is determined by the composed sum of observational features,
that also is applied for similarity matching (see Subsection ..). Even though the k-means
clustering algorithm is effective for our current setup, alternatives such as tree-indexing
structures (e.g., kd-trees (Bentley, ) or cover trees (Beygelzimer et al., )) may be
considered when working with increasingly large collections of cases. at is, we currently
exploit hundreds of thousands observations. e number of observations may increase to
millions, for instance, in massively multiplayer online games (MMOGs).

.. Initialisation of game AI
e component ‘initialisation of game AI’ is employed in step B. It concerns the selection of
a game strategy that is adopted by the gameAI at the start of the game. To select intelligently
the strategy that is initially followed by the game AI, we need to determine which strategy
the opponent player is likely to employ. To this end, we model opponent players based on
actual game observations.

In the current experiments, we construct opponent models on the basis of observations
of the parameter values of the opponent strategies, which indicate the strategic preferences
of particular opponents. is might be considered “cheating”, as we use information that,
in general, is not available to a player. However, we adhere to the mentality and habits as
employed in classic game matches. ere, the accurate preparation on an opponent is part
of the game (or model) and is never related to cheating. In our opinion the same holds for
video games. Still, in experiments discussed in Chapter , we will assume that parameters
that underlie opponent behaviour cannot be observed directly, and thus opponent models
will have to be established via alternative techniques, such as statistical learning.

e considerations given above lead us to define the procedure to initialise the game AI
as follows. First, determine the parameter values of the game strategy that is adopted by the
opponent player. Second, determine in which parameter bands (Evans, ) the opponent
strategy can be abstracted. We define three bands for each parameter, ‘low’, ‘medium’ and
‘high’. ird, initialise the game AI with a strategy that was observed as effective against the
most similar opponent. We consider a strategy effective when in previous play it achieved
a predefined goal (thus, the game AI will never be initialised with a predictably ineffective
strategy). Moreover, we consider opponents strictly similar when the abstracted values of
the parameter bands are identical.

.. Similarity matching
e component ‘similarity matching’ is employed in step C. It is supportive for the com-
ponent to perform online strategy selection. For selecting an effective game strategy, the
similarity matching component compares directly the strategic similarity of game observa-
tions.

As a first step to match observations for similarity, the selection of the features and the
weights assigned to each feature are determined by the researchers, to reflect their expertise

96 The adaptation mechanism

with the game environment. It is a heuristically composed function, that works well when
seen in the current stage of development of adaptive gameAI.We admit that by only utilising
our expert knowledgewemay restrict the effectiveness of our implementation. However, the
investigation of further improvements with regard to the selection of features is considered
a topic for future research. To compare a given observation with another observation, we
use six observational features to provide measures for strategic similarity, namely () phase
of the game, () material strength, () commander safety, () positions captured, () econo-
mical strength, and () unit count. e first three features are also applied for establishing
our evaluation function (see Chapter ). Features four to six are incorporated to provide
additional measures for strategic similarity. For convenience of the reader, in Appendix B
we will provide an overview of all features that are used in the three main components of
case-based adaptive game AI.

Our function to calculate the strategic similarity is defined by a composed sum. e
terms concern the absolute difference in features values. By default, the features are assigned
aweight of one.e first term is composed by the feature ‘phase of the game’ and ‘unit count’.
e feature ‘unit count’ is assigned aweight of ., to reflect its lesser importance.e feature
‘phase of the game’ is incremented by a value of one, to enforce a positive feature value in the
case that there is no difference in the phase of the game. As a result, this leads us to denote
the function to calculate strategic similarity as follows.

similarity(obs1, obs2) = ((1+ diff_phase_of_the_game(obs1, obs2))

∗ (0.5 ∗ diff_unit_count(obs1, obs2)))
+ diff_material_strength(obs1, obs2)
+ diff_commander_safety(obs1, obs2)
+ diff_positions_captured(obs1, obs2)
+ diff_economical_strength(obs1, obs2) (.)

In Subsection .. we noted that game observations are clustered. As a result, calcula-
ting the similarity between clustered observations is computationally relatively inexpensive.
is is important, as similarity matching is performed online (in step C).

.. Online strategy selection
e component ‘online strategy selection’ is employed in step C. It concerns selecting online
which strategy to employ in actual play.Online strategy selection is performed at every phase
transition of the game. e selection procedure consists of three steps.

First, we preselect theN games in the case base that aremost similar to the current game.
To this end, we use the computed game indices to preselect the games with the smallest
accumulated fitness difference with the current game, up until the current game state.

Second, from the preselected N games, we select theM games that satisfy a particular
goal criterion. e goal criterion can be any metric to represent preferred behaviour. In our
experiments, the goal criterion is a desired fitness value. For instance, a desired fitness value
of one hundred represents a significant victory, and a fitness value of zero represents a draw
situation for the players, which may be considered balanced gameplay.

6.3 | Validating the adaptation mechanism 97

ird, of the selectedM games, we perform the strategy of the game observation that
is most similar to the current game state in terms of strategic features. e similarity of
observations is determined via the similarity function that is outlined in Subsection ...

Wenote thatwe consider that performing strategies associatedwith similar observations
may not necessarily yield the same outcomewhen applied to the current state. Itmay happen
that observations that are strategically similarmay result fromdistinct circumstances earlier
in the game. erefore, to estimate the effect of performing the retrieved game strategy, we
measure the difference in fitness values between the current and the selected observation,
and straightforwardly adjust the expected fitness value. For instance, we consider () that
after playing the game for a certain amount of time, the fitness value of the current game
is -, () that the fitness value of a similar game at that same time was +, and () that the
game strategy followed in a similar game resulted ultimately in a fitness value of + when
the game had finished. In such a situation, we estimate that applying the game strategy of
the particular similar game will result ultimately in a fitness value of −5+ (10− 5) = 0.

6.3 Validating the adaptation mechanism

is section reports on two experiments that validate our case-based based adaptation me-
chanism in the S game. We are foremost interested in the performance of the adapta-
tion mechanism. In the experiments, we therefore measure the performance of the adapta-
tion mechanism in actual play.e performance is expressed by the ability of the adaptation
mechanism to endow an adaptive game AI with effective behaviour in the S game. For
an extensive description of S, we refer the reader to Appendix A..

e remainder of this section is organised as follows. We first describe the experimental
setup (..). Subsequently, we discuss how the performance of the adaptationmechanism is
assessed (..). Next, we give the experimental results of the first experiment (..) and of
the second experiment (..). Finally, the section is concluded by a discussion of the results
(..).

.. Experimental setup

egeneral experimental setup can be described in two parts. (A) In the case base we gather
feature data of a multitude of games. (B) We exploit data gathered in the case base in two
experiments that test the adaptation mechanism in the S game. In experiment one,
we test the ability of the mechanism to establish effective behaviour by performing game
adaptation. In experiment two, we test the ability of the mechanism to provide a straightfor-
ward form of difficulty scaling (i.e., in our experiment, uphold a draw position).

e two steps, viz. (A) gathering feature data, and (B) testing the adaptationmechanism,
are described in more detail below. As the step ‘gathering feature data’ was already given in
Subsection .., in the description that follows we will focus on the differences of the step
for the current experiments.

98 The adaptation mechanism

(a) SmallDivide (b) eRing (c) MetalHeckv

Figure .: e three maps that were used in our experiments.

A. Gathering feature data

We collect data of the defined observational features (see Subsection ..) from S
games in which two game AIs are pitted against each other. As friendly player, we use the
‘AAI (cb)’ game AI. As opponent player, we use the ‘AAI (original)’ game AI.

Feature data is collected on three different RTS maps (see Figure .). e three maps
are (a) SmallDivide, (b) eRing, and (c) MetalHeckv. All maps are virtually symmetrical
and have nowater areas.emap SmallDivide, illustrated in Figure .(a), is the default map
of the S game, and has one choke point in the centre of the map. e map eRing,
illustrated in Figure .(b), is a map with an impassable mountain in the centre of the map.
e map MetalHeckv, illustrated in Figure .(c), is a map without significant obstacles,
that in addition is abundant with in-game metal resources. For each of the three maps, we
gather data from  observed games that are played on the particular map.

For gathering feature data, we simulate competition between different players. is is
performed for each game by pseudo-randomising the  strategic parameters of each player
of the game (see Subsection ..). e pseudo-randomisation results in the players follo-
wing a randomly generated strategic variation of an effective strategy.

We submit two considerations. First, the amount of offline storage should be relatively
low for a case-based approach to be regarded practical.at is, low with respect to the com-
putational power of the system on which the game runs. Second, as the selection of the
game features plays an important role in the effectiveness of the adaptation mechanism, we
should allow for a posteriori re-definition and selection of features. In acknowledgement
of these two considerations, we decided to store in the case base raw game observations,
from which feature data can be derived directly. e raw game observations are stored in
a lightweight fashion, by only abstracting the position and unit type of each unit for each
game observation. is abstraction, of approximately  KB per observation, allows for deri-
ving a plethora of additional observational features. Accordingly, a case base was built from

6.3 | Validating the adaptation mechanism 99

Map Games in case base Obs. in case base Data size

SmallDivide  ,  MB
eRing  ,  MB
MetalHeckv  ,  MB

Total  ,  MB

Table .: Contents of the case base.

, observations of  games (three times  games), resulting in  MB of uncom-
pressed observational data.

An overview of the contents of the case base is given in Table .. All games from
which observations are gathered are played under identical conditions. We observe that the
amount of gathered observations depends on the structure of the map. For instance, due to
the choke point in the centre of the SmallDivide map, games on this map generally take a
relatively long time to finish.

B. Testing the adaptation mechanism

To assess the performance of the adaptation mechanism, we determine to what extent the
mechanism is capable of adapting effectively to game circumstances in the S game.
To this end, the adaptation mechanism exploits game observations that are gathered in the
case base. We perform two different experiments with the adaptation mechanism.

In the first experiment, we test to what extent the mechanism is capable of adapting ef-
fectively to behaviour of the opponent player. e experiment is performed in play where
the adaptive ‘AAI (cb)’ game AI is pitted against two types of opponent, () against the ori-
ginal AAI opponent, and () against a random opponent. For play against the latter type of
opponent, the adaptive gameAI is pitted against the original AAI opponent that is initialised
with a randomly generated strategy. at is, in each trial of the experiment, a variation of an
effective strategy is generated randomly. On each of the three RTS maps (i.e., SmallDivide,
eRing, andMetalHeckv) we perform  adaptation trials for play against each two types
of opponent. All adaptation trials are performed under identical conditions.

In the second experiment, we test to what extent the mechanism is capable of upholding
a draw position. e experiment is performed in play where the adaptive ‘AAI (cb)’ game
AI is pitted against the same two types of opponent as the first experiment. e second
experiment is performed on the default map of the S game, the map SmallDivide. On
the map, we perform  adaptation trials for play against each two types of opponent. All
adaptation trials are performed under identical conditions.

Detailed experimental settings that apply for both experiments are as follows. For off-
line clustering of observations, k is set to ten per cent of the total number of observations.

 Approaches are available to keep reducing the size of the case base, such as offline data compression and
subsequent online data decompression (Abou-Samra et al., ), and automatic condensation of the case
base (Angiulli and Folino, ). However, incorporating these approaches lies outside the scope of the present
research.

100 The adaptation mechanism

Figure .: Screenshot of the S CBR interface. In the screenshot, the current game state is com-
pared with states of previously observed games that are gathered in the case base. e
top-right panel displays the similarity in fitness value throughout the course of the com-
pared games. e bottom-right panel displays the strategic similarity of the selected game
states.

Before the game starts, the initial strategy is determined. Online (i.e., while the game is in
progress) strategy selection is performed at every phase transition.e parameterN for on-
line strategy selection is set to , and the parameter M is set to  (see Subsection ..).

e S CBR Interface, which we developed to interface between the S game
and the case base, is illustrated in Figure ..e interface allows the adaptationmechanism
to exploit the case base, and enables the mechanism to affect directly the behaviour of ‘AAI
(cb)’ game AI that is operating in the S game.

 Offline processing of the case-base takes approximately  minutes, excluding clustering of observations. One-
time only clustering of observations takes approximately  minutes. Online strategy selection takes approxi-
mately . seconds. Experiments are performed on a PC built around an Intel Core  Quad CPU @ . GHz,
with  GB of RAM.

6.3 | Validating the adaptation mechanism 101

.. Performance assessment
To establish a baseline for comparing the experimental results, both experiments are per-
formed in a setting where the adaptationmechanism is disabled. In this setting, the game AI
does not intelligently determine the initial strategy, but instead randomly selects the initial
strategy, and performs no online adaptation to game circumstances.

For the first experiment, we set the adaptation mechanism to win the game (i.e., obtain
a positive fitness value). In this experiment, the effectiveness of the mechanism is expressed
by the number of games that are won by the friendly player when it uses the adaptation
mechanism.

For the second experiment, we set the adaptationmechanism to uphold a draw position.
In this experiment, the effectiveness of the mechanism is expressed by the amount of time
that a draw can be upheld by the player that uses the adaptation mechanism. We consider
a game state strictly a draw when its fitness value is zero. Naturally, we need to incorporate
some flexibility in our working definition of a draw, as in RTS games players perform actions
in an asynchronous manner (e.g., player  may slightly delay performing the same, effective
actions as player , and as a result may seem weaker for a short period of time). In addition,
we make the assumption that also human players incorporate a certain flexibility in deter-
mining when a game is tied. Using our expert knowledge with the game environment, this
leads us to define an ongoing game as tied, when the friendly player has never obtained a
fitness value less than -, and has never obtained a fitness value greater than +.

.. Exp: Results of game adaptation
In this subsection, we give the results of the first experiment. A general discussion of the
obtained results is provided in Subsection ...

Table . gives an overview of the baseline results of the first experiment performed in
the S game, obtained with disabled adaptation mechanism. e first column of each
table lists against which type of opponent the game AI was pitted. e second column lists
how often the trial was repeated. e third and fourth column list how often the goal of
winning the game was achieved in absolute terms, and in terms of percentage, respectively.

e baseline results reveal that on the map SmallDivide, the game AI with disabled
adaptation mechanism is able to win  of the games played against the original AAI op-
ponent. is indicates that on the map SmallDivide the original AAI opponent is initialised
with effective behaviour. In contrast, on themapeRing, the gameAIwith disabled adapta-
tion mechanism is able to win  of the games played against the original AAI opponent.
is indicates that on the map eRing the orginal opponent is easier to defeat, compared
to play on the map SmallDivide. On the map MetalHeckv, the effectiveness of the game AI
with disabled adaptation mechanism is . is indicates that, by approximation, on this
map both players are equally effective.

In addition, the baseline results reveal that in play against randomly generated oppo-
nents on the map SmallDivide and eRing, the effectiveness of the game AI approximates
. As both players follow a randomly selected strategy, this resultmay be expected. Howe-
ver, on themapMetalHeckv, the effectiveness of the game AI is substantially less than .
It is difficult to pin down a precise explanation for why on this map the effectiveness is not

102 The adaptation mechanism

SmallDivide
Opponent Trials Goal achv. Goal achv. ()

Original AAI   
Random   

eRing
Opponent Trials Goal achv. Goal achv. ()

Original AAI   
Random   

MetalHeckv
Opponent Trials Goal achv. Goal achv. ()

Original AAI   
Random   

Table .: Performances by AAI(cb); baseline effectiveness with disabled adaptation mechanism (ex-
periment ).

roughly . We surmise that the effectiveness is hampered by certain low-level AI effects
that, in randomised play on the map, are not influenced by adapting the high-level AI pa-
rameters. is means, while the starting positions might seem equal from the perspective
of a human player, the low-level AI might be biased in being more effective at starting, for
instance, at the top of the map rather than at the bottom of the map.

Table . gives an overview of the results of the first experiment performed in the S
game, obtained with enabled adaptation mechanism. e legend of Table . is equal to that
of Table .. Figure . displays the obtained fitness value as a function over time of two
typical experimental runs on the map SmallDivide. Figure . displays the obtained median
fitness value over all game trials against the original AAI opponent on the map SmallDivide,
as a function over the relative game time.

e results reveal that when pitted against the original AAI game AI, the adaptationme-
chanism improves significantly on the established baseline effectiveness on the map Small-
Divide (, compared to the baseline ) (cf. chi-square test, Cohen, ). In addition,
the adaptation mechanism improves substantially on the established baseline effectiveness
on the mapeRing (, compared to the baseline ). Subsequently, the adaptation me-
chanism improves significantly on the established baseline effectiveness on the map Metal-
Heckv (, compared to the baseline ) (cf. chi-square test, Cohen, ). ese results
indicate that the adaptation mechanism is generically effective in play against the original
AAI game AI.

In addition, the results reveal that in play against randomly generated opponents, the
adaptation mechanism obtains an effectiveness of  on the map SmallDivide. ereby, it
improves on the established baseline effectiveness of . is improvement in effective-
ness is consistent with our findings on the map eRing, where the adaptation mechanism

6.3 | Validating the adaptation mechanism 103

SmallDivide
Opponent Trials Goal achv. Goal achv. ()

Original AAI   
Random   

eRing
Opponent Trials Goal achv. Goal achv. ()

Original AAI   
Random   

MetalHeckv
Opponent Trials Goal achv. Goal achv. ()

Original AAI   
Random   

Table .: Performances by AAI(cb); effectiveness with enabled adaptation mechanism (experiment
).

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

31
3

32
5

33
7

34
9

36
1

37
3

38
5

39
7

40
9

42
1

43
3

44
5

45
7

46
9

48
1

49
3

50
5

51
7

52
9

54
1

55
3

56
5

57
7

58
9

60
1

61
3

62
5

63
7

64
9

66
1

67
3

68
5

69
7

−10

−5

0

5

10

15

20

25

Win Tie

Time step

Fi
tn

es
s

va
lu

e

Figure .: Obtained fitness values as a function over time, when pitted against the original AAI game
AI on the map SmallDivide. e figure displays a typical experimental result of () the
adaptation mechanism set to win the game, and () the adaptation mechanism set to up-
hold a draw (indicated at the top of the figure). A time step equals . seconds (cf. Sub-
section ..).

104 The adaptation mechanism

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

Adaptive game AI Baseline

Percentage of game time

M
ed

ia
n

fit
ne

ss
 va

lu
e

ov
er

 g
am

e
tri

al
s

Figure .: Median fitness value over all game trials against the original AAI opponent on the map
SmallDivide, as a function over the relative game time.

obtains an effectiveness of  (compared to the baseline ). Against randomly generated
opponents on the map MetalHeckv, the adaptation mechanism obtains an effectiveness of
 (compared to the baseline ). ese results indicate that even in randomised play,
the adaptation mechanism is able to increase the effectiveness of game AI.

.. Exp: Results of difficulty scaling

In this subsection, we give the results of the second experiment. A general discussion of the
obtained results is provided in Subsection ...

Table . gives an overview of the baseline results of the second experiment, obtained
with disabled adaptation mechanism. e first column of each table lists against which op-
ponent the game AI was pitted. e second column lists how often the trial was repeated.
e third column lists the average time to uphold a draw position, and, between brackets,
the accompanying standard deviation of the obtained result.

e baseline results reveal that without applying difficulty-scaling techniques, the game
AI will on average uphold a draw position for approximately  minutes when it is pitted
against the original AAI opponent. When the game AI is pitted against randomly generated
opponents, the game AI will uphold a draw position for approximately  minutes.

6.3 | Validating the adaptation mechanism 105

SmallDivide
Opponent Trials Time to uphold draw

Original AAI  . min (. min)
Random  . min (. min)

Table .: Performances by AAI(cb); baseline effectiveness upholding a draw (experiment ).

SmallDivide
Opponent Trials Time to uphold draw

Original AAI  . min (. min)
Random  . min (. min)

Table .: Performances by AAI(cb); upholding a draw with the adaptation mechanism (experiment
).

Table . gives an overview of the results of the second experiment, obtained with ena-
bled adaptation mechanism. e legend of Table . is equal to that of the table with the
baseline results.

e results reveal that when pitted against the original AAI opponent, the adaptation
mechanism improves significantly on the time in which a draw is upheld ( minutes, com-
pared to the baseline  minutes) (cf. t-test, Cohen, ). e typical result given in Fi-
gure ., reveals that a draw can be upheld for a sustained period of time. At certain point
in time, inevitably, the game AI will no longer be able to compensate play of the opponent,
and the game will either be won or lost by the game AI. Comparable performance is obtai-
ned when the adaptation mechanism is pitted against opponents with randomly generated
strategies. e results reveal that when pitted against opponents with randomly generated
strategies, the adaptation mechanism improves significantly on the time in which a draw is
upheld ( minutes, compared to the baseline  minutes) (cf. t-test, Cohen, ).

.. Discussion of the results

In the first experiment that tested our implementation of the adaptation mechanism, we
observed that game AI that incorporated the mechanism was well able to achieve a victory
when pitted against the original AAI game AI. We noticed that the adaptation mechanism
was able to find in the case base strategies that could effectively defeat the original AAI game
AI. As the original AAI gameAI is not able to adapt its behaviour, the adaptationmechanism
could exploit its discovery indefinitely. Note that in some cases, the adaptive game AI did

106 The adaptation mechanism

not win the game, despite it exhibiting strong behaviour. Such outliers cannot be avoided
due to the inherent randomness that is typical to video games.

In addition, we observed that even in play against randomly generated opponents, the
adaptation mechanism is generally able to find effective strategies in the case base, and was
thereby capable of improving on the baseline performance. As play against randomly gene-
rated opponents may be considered a simulated way to test the game AI against previously
unobserved opponents, this is a satisfactory result. Naturally, the question remains how the
performance in randomised play can be further enhanced. We discuss two possible ways
to enhance the performance in play with randomly generated opponents, () gather more
games in the case base, and () incorporate opponent modelling.

First, note that for each map our case base currently consists of observations that were
collected over  games. For randomised play, determined by  pseudo-randomised beha-
vioural parameters (see Subsection ..), it would be beneficial to collect more games in the
case base in order to increase the probability of it containing effective game strategies. As
case-based adaptive game AI can be expected to be applied in the playtesting phase of game
development, and predictably in multi-player games, the case base in practical applications
is expected to grow rapidly to contain a multitude of effective strategies.

Second, we observed that the final outcome of a S game is largely determined by
the strategy that is adopted in the beginning of the game.is exemplifies the importance of
initialising the game AI with effective behaviour. In order to do so, a player needs to deter-
mine accurately the opponent against whom it will be pitted.We assume that in video-game
practice, (human) game opponents do not exhibit behaviour as randomas in our experimen-
tal setup, but will exhibit behaviour that can be abstracted into a limited set of opponent
models. erefore, on the condition that accurate models of the opponent player can be
established, we will follow the expert opinion that game AI should not so much be focus-
sed on directly exploiting current game observations, but should rather focus on effectively
applying models of the opponent in actual game circumstances (Rabin, ).

In the second experiment that tested our implementation of the adaptation mechanism,
we observed that the adaptationmechanism is able to uphold a draw for a sustained period of
time. is ability may be regarded as a straightforward form of difficulty scaling. If a metric
can be established that represents the preferred level of challenge for the human player, then
in theory our adaptation mechanism is capable of scaling the difficulty level to the human
player. Such a capability provides an interesting topic for future research.

6.4 Chapter conclusions

In this chapter we reported on our adaptation mechanism for video game AI. e mecha-
nism aims at allowing game AI to adapt rapidly and reliably to game circumstances. To this

 We note that in the S game, the most powerful unit is able to destroy a Commander unit with a single
shot. Should the Commander be destroyed in such a way, the question would arise if this was due to bad luck,
or due to an effective strategy by the opponent. For game AI to be accepted as effective players, one could argue,
recalling the previously mentioned need for consistent AI behaviour, that game AI should not force a situation
that may be regarded as the result of lucky circumstances.

6.4 | Chapter conclusions 107

end, it is incorporated in a framework for case-based adaptation (cf. Section .).e adapta-
tion mechanism exploits game observations that are gathered in the case base to (A) gene-
ralise offline over observations, (B) initialise the game AI with a predictably effective game
strategy, and (C) adapt online the game AI to game circumstances. e adaptation mecha-
nismwas tested on three differentmaps in the S game environment.Our experimental
results show that the adaptation mechanism can successfully obtain effective performance.
In addition, the adaptationmechanism is capable of upholding a draw for a sustained period
of time. From these results, we may conclude that the mechanism for case-based adaptation
of game AI provides a strong basis for adapting rapidly and reliably the player’s behaviour
in an actual, complex video game: S.

Moreover, we noted that to play a video game adequately, it is important to be able to
model the opponent player, and utilise effectively the models in actual game circumstances.
In the next chapter we will therefore investigate opponent modelling for video games.

7
Opponent modelling

In this chapter we concentrate on opponent modelling, one of the three main components
of case-based adaptive game AI. Opponent modelling is a technique that enables game AI
to establish and exploit models of the opponent player. e goal of opponent modelling
is to improve the decision-making capabilities of game AI, by allowing it to adapt to the
playing strategy of the opponent player. In modern, complex video games, establishing and
exploiting effectively opponent models is a difficult task.

Chapter  is organised as follows. We first describe the concept of opponent modelling
(Section .). Subsequently, we report on two experiments that concern establishing mo-
dels of the opponent player in a complex RTS game (Section .). en, we report on an
experiment that concerns exploiting models of the opponent player in a complex RTS game
(Section .). Finally, we present the chapter conclusion (Section .).

7.1 Opponent modelling

Opponentmodelling is an important research area in game playing. It concerns establishing
models of the opponent player, and exploiting the models in actual play. Opponent model-
ling has also received attention outside the domain of games, for instance in military si-
mulations (see, e.g., Wray and Laird, ) and intrusion detection (see, e.g., Yampolskiy,
). In general, an opponent model is an abstracted description of a player or of a player’s
behaviour in a game. e goal of opponent modelling is to improve the capabilities of the
artificial player by allowing it to adapt to its opponent and exploit his weaknesses (Carmel
and Markovitch, ; Iida et al., ; Donkers et al., ; Donkers, ). Even if a game-
theoretical optimal solution to a game is known, a computer program that has the capability

is chapter is based on the following two publications.
) Schadd, F. C., Bakkes, S. C. J., and Spronck, P. H. M. (). Opponent modeling in real-time strategy

games. In Roccetti, M., editor, Proceedings of the th International Conference on Intelligent Games and
Simulation (GAMEON’), pages –. EUROSIS-ETI, Ghent University, Ghent, Belgium.

) Mehlkop, B. (). Adaptive game AI using opponent modelling. Master’s thesis, Faculty of Humanities
and Sciences, Maastricht University, Maastricht, e Netherlands.

110 Opponent modelling

to model its opponent’s behaviour may obtain a higher reward. A recent example that illu-
strates the importance of opponentmodelling, derived from Fürnkranz (), is as follows.

Consider, the game of roshambo (also known as rock-paper-scissors). Assume both play-
ers play their optimal strategies (i.e., randomly select one of their three moves). In this case
either player can expect to win one third of the games (with one third of the games drawn).
However, against an opponent that always plays rock, a player that is able to adapt his stra-
tegy to always playing paper can maximize his reward, while a player that sticks with the
‘optimal’ random strategy will still win only one third of the games.

e remainder of this section is organised as follows. First, we discuss concisely oppo-
nentmodelling in classic games (..). Subsequently, we discuss concisely opponentmodel-
ling in video games (..).

.. Opponent modelling in classic games
In classic games, opponentmodelling has as itsmain goal to improve the performance of the
own (artificial) player (Van den Herik et al., ). e objective is to exploit the opponent’s
weaknesses. Better game results are positively correlated with a higher playing strength.
Computer programs that play classic games generally incorporate search techniques to find
possible game actions by the opponent, of which amodel can be constructed. As a result, the
role of opponent modelling in classic games is to guide the search process towards improved
game results.

In the remainder of this subsection, we provide (A) a brief history of opponentmodelling
in classic games, and describe (B) the state of the industry with regard to incorporating
opponent-modelling techniques.

A. History

In the domain of classic games, opponent modelling is a research topic that was envisaged
already a long time ago. Van den Herik et al. () observe that, for instance, in the s
chess programs incorporated a contempt factor, meaning that against a stronger opponent
a draw was accepted even if the player was +. ahead, and a draw was declined against a
weaker opponent even when the player had a minus score.

e first attempt to opponent modelling in classic games was taken by Slagle and Dixon
(), who incorporated rudimentary knowledge of the opponent in the search process.
For instance, such knowledge can concern assumptions on the fallibility of an opponent
(Reibman and Ballard, ); gameAI can consider the chance that the opponent performs a
non-rational game action. In related work, Jansen (, ) investigated using knowledge
about the opponent in game-tree search.

Research specifically focussed on the topic of opponent-modelling search started in .
In that year, two research groups, one in Haifa, Israel and one in the Maastricht, the Ne-
therlands, simultaneously developed a search method that took knowledge of the oppo-
nent player into account. ey both called it: opponent-model search. In Israel, Carmel and
Markovitch (, ) investigated in depth the learning of models of opponent strategies.
In the Netherlands, Iida et al. () investigated potential applications of opponent-model

7.1 | Opponent modelling 111

search. An extensive description of the history of opponent modelling is given by Donkers
().

In the year , Uiterwijk and Van den Herik () developed a search technique to
“speculate” on the fallibility of the opponent player. In the s, Donkers et al. () and
Donkers () defined probabilistic opponent models, that attempted to avoid the pitfalls
of opponent modelling by incorporating the player’s uncertainty about the opponent’s stra-
tegy.

B. State of the industry

e realisation of most ideas concerning opponent modelling is still in its infancy. ere
are three successful instances of actual implementation, viz. () roshambo (Egnor, ), ()
iterated prisoner’s dilemma (Kendall, ), and () poker (Billings, ). Still, there is a
wealth of techniques that are waiting for implementation in actual games (Van den Herik
et al., ).

.. Opponent modelling in video games
Opponentmodelling is of increasing importance inmodern video games (Fürnkranz, ).
In video games, opponent modelling has as its main goal raising the entertainment factor
(instead of raising the playing strength) (Van denHerik et al., ). In the remainder of this
subsection, we subsequently describe (A) the roles of opponent modelling in video games,
(B) the challenges of opponent modelling in video-game environments, (C) approaches ap-
plicable for opponentmodelling in video games, and (D) the state of the industry with regard
to incorporating opponent-modelling techniques.

A. Roles of opponent modelling

In order the increase the entertainment factor of a video game, game AI that incorporates
opponent modelling may fulfil two roles: () as a companion, and () as an opponent. Each
role entails distinct requirements for the game AI. A description of the two roles is given
next. e description is derived from a review article by Van den Herik et al. (), to
which we refer the reader for more information on the topic.

Companion role: In the companion role, the game AI must behave according to the ex-
pectations of the human player. For instance, when the human player prefers an incon-
spicuous approach to dealing with opponent characters (e.g., by attempting to main-
tain undetected), he will not be pleased when the computer-controlled companions
immediately attack every opponent character that is near. If the companions fail to
predict with a high degree of success what the human player desires, they will likely
annoy the human player, which is detrimental for the entertainment value of the game.

Opponent role: In the opponent role, the game AI must be able to match the playing skills
of the human player, and respond adequately to the player’s playing style. is is a
difficult task. Research has shown that when the opponent characters play too weakly

112 Opponent modelling

a game against the human player, the human player loses interest in the game (Scott,
). In addition, research has shown that when the opponent characters play too
strong a game against the human player, the human player gets stuck in the game and
will quit playing too (Livingstone and Charles, ; Van Lankveld et al., ).

B. Challenges

Houlette () discussed the challenges of opponent modelling in video-game environ-
ments, and suggested some possible implementations of opponent modelling. A challenge
for opponent modelling in video games is that models of the opponent player have to be es-
tablished () in game environments that generally are relatively realistic and relatively com-
plex, () with typically little time for observation, and () oftenwith only partial observability
of the environment.

Once opponent models are established, classification of the opponent player has to be
performed in real time.Other computations, such as rendering the game graphics, have to be
performed simultaneously. Researchers estimate that generally only  of all computing
resources are available to the game AI (Millington, ). Of these , a large portion
will be spent on rudimentary AI behaviour, such as manoeuvring game characters within
the game environment. is implies that only computationally inexpensive approaches to
opponent modelling are suitable for incorporation in the game AI.

C. Applicable approaches

In video games, a common approach to establishingmodels of the opponent player is bymo-
delling the actions of the player (Donkers and Spronck, ), for instance, by using n-grams
(Laramée, ). An alternative approach is to model the preferences of opponent players,
instead of the actions resulting from those preferences. is preference-based approach is
viable (Donkers and Spronck, ) and identifies the model of an opponent by analysing
the opponent’s choices in predefined game states.

In the preference-based approach, opponent modelling can be seen as a classification
problem, where an opponent is classified as one of a number of available models based on
data that is collected during the game. Behaviour of the game AI is established based on
the classification of the opponent. Modelling of preferences may be viewed as similar to
approaches that regard known opponent models () as stereotypes, and () as an abstraction
of observations (Denzinger and Hamdan, ). As a means to generalise over observed
game actions, in the remainder of the chapter, we follow the preference-based approach.

D. State of the industry

In recent years there have been several successful implementations of opponent modelling.
For instance, Rohs () was able to model accurately the preferences of opponent players
in the game C IV. Yannakakis and Hallam () investigated the modelling of
opponent players, for the purpose of optimising player satisfaction, and Sailer et al. ()
incorporated opponent modelling to enhance simulation-based planning in RTS games. In
addition, researchers designed techniques to predict the position of opponent players in

7.2 | Establishing opponent models in SPRING 113

first-person shooters (Darken andAnderegg, ), and in the gameWW
(Valkenberg, ). Laviers et al. (a,b) investigated improving AI performance through
opponent modelling in the R  football simulator. In the related domain of interac-
tive storytelling, ue et al. () investigated how models of the opponent player can be
applied to create stories that can be adapted to fit individual players.

7.2 Establishing opponent models in SPRING

In a typical RTS game such as S, an important factor that influences the choice of
strategy, is the strategy that is employed by the opponent player. For instance, if one knows
what types of units the opponent has, then typically one would choose to build units that
are (considered as) strong against those of the opponent. To make predictions about the
opponent’s strategy, an AI player can establish an opponent model. In this section we will
discuss to what extent models of the opponent’s strategy can be established in the S
game.

In the remainder of this section, we first discuss the so-called hierarchical approach to
establishing opponent models in the S game (..). Subsequently, we describe our
implementation of the approach (..). Next, we report on two experiments that test the
implementation (..). Finally, we provide a discussion of the obtained results (..).

.. Approach to establishing opponent models
A straightforward preference-based approach to opponent modelling in S is the fol-
lowing (cf. Schadd et al., ). First, establish a predefined number of possible opponent
models. Subsequently, in actual play, track the confidence value of the game observations
resulting from the behaviour that is modelled by each opponent model. Finally, the obser-
ved behaviour is classified as resulting from the particular opponent model that obtained
the highest confidence value.

An enhancement to the straightforward approach is to apply an hierarchical ordering
on the possible opponent models (Houlette, ). is so-called hierarchical approach al-
lows the division of a relatively complicated classification problem into several relatively
straightforward classification problems. In addition, the hierarchical approachmakes it pos-
sible to use different classification methods at each level of the hierarchy. For establishing
opponent modelling in S, we follow the hierarchical approach. Indeed, we admit that
by predefining the number of possible opponentmodels, wemay restrict the accuracy of the
classification. e investigation of further improvements is reported on in Chapter .

e opponent models that we will establish, will model the strategy that is employed by
the opponent player. For the present experiments, we define a strategy as the general playing

 In the current section, the topic of ‘establishing’ opponent models would be relatively aimless without the
incorporation of a means to validate the accuracy of the models. erefore, in our investigation we focus also
on the topic of validating the models by means of ‘classifying’ opponent behaviour in actual play. We note that
strictly speaking, classification of models falls under the topic ‘exploiting’ the established opponent models.
 e work reported on in this section is performed by Schadd et al. (), under supervision of the author.

114 Opponent modelling

style combined with the opponent’s choice of units built. e most characteristic element of
an opponent’s strategy is the general playing style. We therefore place the general playing
style at the top of the hierarchy. Each general playing style has its own submodels that further
determine behavioural characteristics of the style.

.. Implementation of the approach
In this subsectionwe describe our implementation of the hierarchical approach to establish-
ing opponent models. e approach is implemented in the S game. We first describe
(A) the opponent behaviour that is to be modelled. e opponent behaviour can be abstrac-
ted in a hierarchy of two levels, viz. () the top level, and () the bottom level. Subsequently,
we describe (B) the top-level classification of opponent behaviour, and (C) the bottom-level
classification of opponent behaviour.

A.e opponent behaviour

For modelling a strategy in the S game we decided to distinguish at the top level bet-
ween an aggressive, and a defensive playing style.

For an aggressive playing style we distinguish at the bottom level between an opponent
that is predominantly using one of the four predefined unit types: () k-bots, () tanks, ()
aircrafts, and () ships. Each unit type has specific strengths and weaknesses (see Appen-
dix A.), and as a result is used to execute a particular strategy. For instance, k-bots are
relatively fragile but can cross mountains, and are therefore useful for a strategy against an
opponent which attempts to block cliffs between mountains. Tanks can only manoeuvre on
non-elevated terrain but are relatively sturdy, and are therefore useful for a strategy against
an opponent who constructs strong defenses.

For a defensive playing style we distinguish at the bottom level between an opponent that
pursues one of the following three building preferences: () nuke, () tech, and () bunker.
ese three building preferences are commonly observed in actual S games.

e hierarchy of the opponent models is displayed in Figure .. e hierarchy consists
of two levels (i.e., a top level, and a bottom level), and encompasses the following strategies.

• Aggressive→K-bots. e opponent will attack early, and will typically use k-bots.
• Aggressive→Tanks. e opponent will attack early, and will typically use tanks.
• Aggressive→Aircrafts. e opponent will attack early, and will typically use aircrafts.
• Aggressive→Ships. e opponent will attack early, and will typically use ships.
• Defensive→Nuke. e opponent will not attack early, and will attempt to construct a

nuclear super weapon.
• Defensive→Tech. e opponent will not attack early, and will attempt to reach a high

technology level in order to have rapid access to advanced units.
• Defensive→Bunker. e opponent will not attack early, and will construct a wall of

static defenses around his base so that it has time to construct an army.

7.2 | Establishing opponent models in SPRING 115

Figure .: Hierarchy of the opponent models in S.

B.e top-level classifier

We implement the top-level classifier by using fuzzy models (Zarozinski, ). Fuzzy mo-
dels create models of several classes based on a single numerical feature. e choice of the
numerical feature is crucial, as it should be able to distinguish between the defined classes.
Fuzzy models may be considered a computationally-inexpensive form of modelling.

In our hierarchy of opponent models, the top-level classifier has to distinguish between
the classes ‘aggressive’ and ‘defensive’. An aggressive opponent, on the one hand, typically
will employ the available game time for preparing many small attacks, and as a result will
spend a large part of the game time on executing attacks. A defensive opponent, on the other
hand, typically will employ the available game time for preparing one large attack, and as a
result will spend only a small part of game time on executing attacks. us, an appropriate
numerical feature to distinguish between the two classes would be the relative amount of
game time that the opponent spends on executing attacks.

For the present experiments, we define an attack as the observed loss of a player’s own
units. When a loss of units is detected, the time span around this moment can be regarded
as the time that an attack took place. Because information about a player’s own units is
always available, this definition is suitable for use in an imperfect-information environment.
e time span is defined as a moving window of N seconds, and is described further in
Subsection ..-A.

116 Opponent modelling

C.e bottom-level classifier

We implement the bottom-level classifier for distinguishing between the submodels that
further determine behavioural characteristics of the hierarchy’s top level. e dynamic na-
ture of RTS games implies that a player’s strategy may change during the game. Particularly
for classifying the bottom-level strategy, the classifier needs to emphasise recent in-game
observations more than earlier in-game observations. To achieve the emphasis in classi-
fication, the principle of discounted rewards in repeated matrix-games is applied (cf., e.g.,
Gibbons, ).

We classify the bottom-level strategy on the basis of observations made during in-game
events. In classical games, a game event would generally be one move of both players. Since
RTS games do not operate in strictly defined moves, the term of an event must be adapted
for our implementation. When playing against an aggressive opponent, we regard the oc-
currence of an attack as a suitable event, since the player can then observe the army of the
opponent player. When playing against a defensive opponent, we regard the occurrence of
scouting units that reach the opponent’s base as a suitable event, since the player can then
observe the base of the opponent player.

When a game event is detected, the confidence values of each possible strategy will be
updated according to the observed game information. If δ is the discount factor, ψs,t the
belief that the opponent uses strategy s at event t, ranging between  and , π the total
reward added at each event, and i the most recent event, then the confidence cs that the
opponent uses strategy s is computed as follows (adapted from Gibbons, ).

cs =

0∑
t=i

ψs,t ∗ π ∗ δi−t (.)

e value of parameter ψs,t is acquired by inspecting all visible units and buildings du-
ring event t. Each unit or building has a value representing a tendency to a certain strategy.
ese so-called unit-tendency values were determined by the experimenter, using his own
knowledge of the game (Schadd, ). We give two examples of unit-tendency values: () a
common defensive tower has a relatively small tendency towards being used in the defensive
bunkering strategy, and () a nuclear super-weapon building has a relatively high tendency
towards being used in the defensive nuke strategy.

.. Experiments with the implementation
is subsection reports on two experiments. In the first experiment we test the top-level
classifier. In the second experiment we test the bottom-level classifier. In the remainder of
the subsection, we first discuss (A) the experimental setup. Subsequently, we give (B) the
results of the experiment that tests the top-level classifier. Next, we give (C) the results of
the experiment that tests the bottom-level classifier. Finally, we provide (D) a summary of
the experimental results.

 To some extent, emphasising recent in-game observations more than earlier in-game observations may also
be the desirable for classifying the top-level strategy. Based on our experience with the S game, however,
we here assume that a player generally does not switch the top-level strategy during play of one game.

7.2 | Establishing opponent models in SPRING 117

A. Experimental setup

e general experimental setup is as follows. We pit two game AIs against each other, and
during play of the game we measure the confidence values obtained by the top-level and
bottom-level classifiers. As friendly player we use the AAI game AI (Seizinger, ). As
opponent player, that will follow the defined strategies (described in Subsection ..-A),
we use the NTAI game AI (Nowell, ). Opponent behaviour is classified as resulting
from the opponent strategy that models the behaviour with the highest confidence. e
performance of a classifier is expressed by the correctness of the classification.

We test the top-level classifier’s ability to distinguish between an aggressive and a de-
fensive strategy. In addition, we test the bottom-level classifier’s ability to distinguish bet-
ween the aggressive submodels k-bots and tanks, and between the defensive submodels bun-
ker, tech, and nuke. Tests with classifying the aggressive submodels aircrafts and ships were
omitted by the experimenter. However, considering the relative similarity of the two sub-
models with the aggressive submodels k-bots and tanks, we surmise that a comparable per-
formance may be expected. Detailed settings for each of the two experiments are described
below.

Testing the top-level classifier: e top-level classifier requires theAI to detect if an attack
took place (see Subsection ..). Detection of an attack is implemented as follows.
e AI will register all visible units every N seconds, where N is the size of the time
window.edetection algorithmwill scan each game state for lost units. If the amount
of lost units is above a certain threshold value, then each game state inside the analysed
time window is labelled as a moment in which the opponent player was attacking the
friendly player.
Two parameters determine the accuracy of the attack detection algorithm. e first
parameter is the size of the time window. e second parameter is the unit-lost thres-
hold, which is a percentage value. In comparative tests it was determined that effective
parameter settings are a time window of  seconds, and a unit-lost threshold of 
(Schadd et al., ). We pitted the AAI player fifty times against an aggressive oppo-
nent, and fifty times against a defensive opponent.

Testing the bottom-level classifier: For testing the bottom-level classifier, the NTAI game
AI has been configured such that the employed game strategies reflect each of the
specified aggressive submodels. However, since NTAI is not able to play adequately
the defensive strategies, a human opponent was chosen to play against the AAI game
AI, by following the defensive strategies. For the discounted reward algorithm, the
parameters were set by the experimenter to δ = 20% and π = 0.8. For each submodel,
we pitted the AAI player ten times against an opponent following the strategy that is
determined by the particular submodels.

B. Performance of the top-level classifier

Below we give the measured confidence values of the top-level classifier. We note that game
developers should interpret obtained confidence values in their own context. at is, a low

118 Opponent modelling

0.0 4.5 9.00.6 1.1 1.7 2.3 2.8 3.4 3.9 5.1 5.6 6.2 6.8 7.3 7.9 8.4 9.6 10.1 10.7 11.3 11.8 12.4 12.9 13.5 14.1 14.6 15.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (minutes)

C
on

fid
en

ce
 v

al
ue

Figure .: Average confidence value over time against an aggressive opponent.

confidence value early in the game, based on limited observations, does not exclude a high
confidence value later in the game, when game observations may be more representative for
the actual play of the opponent. e average confidence value over time against an aggres-
sive opponent is displayed in Figure .. e average confidence value over time against a
defensive opponent is displayed in Figure .. For ease of interpreting the two figures, we
omitted listing the confidence value over time of the “incorrect” classification, as it amounts
a value of one minus the confidence value of the correct classification.

In Figure . we observe that the average confidence value is low in the beginning of the
game. is is due to the fact that the opponent is hardly able to attack early in the game,
since it needs to construct a base first. erefore, one can safely disregard the confidence
values at the beginning of the game. After approximately seven minutes of game time, the
average confidence value increases until it stabilizes at approximately ..

In Figure . we observe that in the beginning of the game, the confidence values are
nearly ..e value is high because the enemy does not attack in the beginning of the game.
e top-level classifier will therefore respondwith themaximumdefensive confidence value
early in the game. One observes that after about ten minutes of game time, the average
confidence value stabilises between . and ..

C. Performance of the bottom-level classifier

Below we give the measured confidence values of the bottom-level classifier. We subse-
quently discuss the confidence values obtained when classifying the aggressive submodels
k-bots and tanks, and when classifying the defensive submodels bunker, tech, and nuke.

7.2 | Establishing opponent models in SPRING 119

0 91 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Time (minutes)

C
on

fid
en

ce
 v

al
ue

Figure .: Average confidence value over time against a defensive opponent.

Aggressive Opponent - K-bots and Tanks

Figure . displays the average confidence over time of an opponent using the aggressive
k-bot strategy. It also displays the average confidence over time of an opponent using the
aggressive tank strategy. We observe that both confidence values eventually approximate a
value over ..Wenote that the average confidence of the aggressive tank strategy increases
more slowly, and more late in the games than the average confidence of the aggressive k-bot
strategy. is can be explained by the fact that constructing tanks requires more resources
than constructing k-bots.erefore, more game timewill be needed for the opponent player
to attack with tank units.

Defensive Opponent - Bunker

Figure . displays the average confidence values obtained against an opponent using the de-
fensive bunker strategy. It also displays the confidence values of the defensive tech and the
defensive nuke strategy. In the discussion of the performance, we focus on the confidence
values of the defensive bunker strategy. We observe that the bunker confidence values in-
creases rapidly after approximately five minutes of game time. Over time the obtained aver-
age confidence value is .. e instabilities that occur after  minutes of game time can
be explained by the fact that at this moment the game AI has discovered buildings that may
also be used by an opponent player that is following the tech strategy.

Defensive Opponent - Tech

Figure . displays the average confidence values obtained against an opponent using the
defensive tech strategy. We observe that for the largest part of the game, the confidence
values of the bunker strategy are higher than the confidence values of the tech strategy. is

120 Opponent modelling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K−bots
Tanks

Time (minutes)

C
on

fid
en

e
va

lu
e

Figure .: Average confidence value over time for two aggressive strategies.

0 1 3 4 6 7 8 10 11 12 14 15 17 18 19 21 22 23 25 26 28 29 30 32 33 34 36 37 39 40 41 43 44 45 47 48 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bunker
Nuke
Tech

Time (minutes)

C
on

fid
en

ce
 v

al
ue

Figure .: Average confidence value over time for an opponent using the defensive bunker strategy.

can be explained by the fact that the units and buildings that define the tech strategy can
only be constructed relatively late in the game. is implies that early in the game only units
and buildings that belong to a different strategy can be observed.When later in the game the

7.2 | Establishing opponent models in SPRING 121

0 1 2 3 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tech
Nuke
Bunker

Time (minutes)

C
on

fid
en

ce
 v

al
ue

Figure .: Average confidence value over time for an opponent using the defensive tech strategy.

AI is able to observe buildings that are characteristic for the tech strategy, the confidence
value of the tech strategy increases.

Defensive Opponent - Nuke

Figure . displays the average confidence values obtained against an opponent using the
defensive nuke strategy. Analogously to the results obtained against an opponent using the
defensive tech strategy, we observe that the confidence values of the bunker strategy are
higher than the confidence values of the nuke strategy. After approximately  minutes
the confidence value of nuke strategy steadily increases. After approximately  minutes,
the discounted-reward algorithm temporarily decreased the confidence value because the
AI did not observe any more buildings associated with the nuke strategy. Eventually the
bottom-level classifier obtains a confidence value of ..

D. Summary of the experimental results

Experimental results obtained with the top-level classifier show that the top-level classifier
can accurately distinguish between an aggressive and a defensive opponent. Experimental
results obtained with the bottom-level classifier show that the bottom-level classifier can ac-
curately distinguish between the established submodels relatively late in the game. Relatively
early in the game, the bottom-level classifier was not always able to distinguish accurately
between the established submodels. is is discussed next.

122 Opponent modelling

0 1 3 4 6 7 8 10 11 12 14 15 17 18 19 21 22 23 25 26 28 29 30 32 33 34 36 37 39 40 41 43 44 45 47 48 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nuke
Bunker
Tech

Time (minutes)

C
on

fid
en

ce
 v

al
ue

Figure .: Average confidence value over time for an opponent using the defensive nuke strategy.

.. Discussion of the results

is subsection provides a discussion of the experimental results. We first discuss (A) the
obtained experimental results in general terms. Subsequently, we draw (B) experimental
conclusions of the present research.

A. General discussion

Ideally, an accurate classification of the opponent’s strategy is available relatively early in
the game, at a time when the player is still able to counter the opponent’s strategy. In the
experiments that tested our implementation of opponent modelling, we observed that the
bottom-level classifier was not always able to distinguish accurately between the establis-
hed submodels early in the game. is phenomenon can be explained by the fact that, typi-
cally, the AI cannot directly observe units and buildings that are characteristic for a particu-
lar bottom-level strategy. To observe the units and buildings associated with the particular
bottom-level strategies, the AI relies on scouting.

A straightforward approach to achieve improved results, therefore, is to adapt the AI’s
scouting behaviour dependent on the need for information on the opponent’s activities. For
instance, in competition against an aggressive opponent, scouting is relatively unimportant.
In competition against a defensive opponent, however, scouting is vital. Analogously, one
may choose to adapt the parameters of the delayed reward algorithm, to emphasise the in-
formation that is obtained during a scout event.

7.3 | Exploiting opponent models in SPRING 123

B. Experimental conclusions

Our experimental results show that an opponent’s general playing style can accurately be
classified by the top level of the hierarchy. In addition, experimental results obtained with
the bottom level of the hierarchy show that early in the game it is difficult to obtain accurate
opponent classifications. Later in the game, however, the bottom level of the hierarchy will
accurately classify between specific strategies of the opponent. From these results, we may
conclude that the approach to establishing opponent models in RTS games can be used
successfully to classify the strategy of the opponent player online, while the game is still in
progress.

7.3 Exploiting opponent models in SPRING

In the previous section we discussed an hierarchical approach to establishing opponentmo-
dels in the S game. It was shown that in this complex game relatively accurate models
of opponent behaviour can be established. In this section, we will focus on exploiting the
established models in online play. Our assumption is that the established models may be ex-
ploited successfully to increase the effectiveness of gameAI. In the remainder of the section,
we investigate the assumption.

e outline of this section is as follows. First, we describe an approach to exploiting the
established opponentmodels (..). Subsequently, we report on an experiment that tests the
approach in the S game (..). Finally, we provide a discussion of the results (..).

.. Approach to exploiting opponent models
In this subsection, we discuss the approach adopted for exploiting opponent models in the
S game (cf. Mehlkop, ). We first describe (A) the game strategies that are consi-
dered by the approach. Subsequently, we discuss (B) exploiting opponent models in play of
the S game.

A. Game strategies

For the present experiment with exploiting opponent models, we employ a set of game stra-
tegies for the approach to respond to effectively in online play. For the present experiment,
we handcraft three game strategies; two aggressive strategies (aircraft and k-bot), and one
defensive strategy (nuke). To ensure that opponent classification is uncomplicated, the three
game strategies are simplified versions of actual strategies. Hence, the focus lies on the effect
of using the opponent classification. e strategies are described below.

Aircraft: e aircraft game strategy is an aggressive strategy. e strategy constructs ex-
clusively aircraft units to attack the opponent player. To ensure a complete focus on
attacking the opponent player, it does not construct defence buildings. e game AI
rapidly sends constructed aircraft units across the map, with the aim to discover the

 e work reported on in this section is performed by Mehlkop (), under supervision of the author.

124 Opponent modelling

location of the Commander unit. Once the Commander unit is located, the game AI
will order increasingly large groups of aircraft units to attack the opponent.

K-Bot: e k-bot game strategy is a moderately aggressive strategy.e strategy constructs
exclusively k-bot units to attack the opponent player. In addition, around its own base,
the game AI constructs relatively light defence buildings, such as light laser turrets.
e game AI will order small groups of units to attack the opponent. Gradually, the
game AI will send increasingly large groups of k-bot units to attack the opponent.

Nuke: e nuke game strategy is a defensive strategy. e strategy does not construct any
units that directly attack the opponent player. Instead, the strategy is aimed at con-
structingmultiple nuclearmissile silos. Once the silos launch their containingmissiles
at the opponent’s base, the effect on the base will be so devastating that the opponent
will typically lose the game instantly.e gameAI constructs relatively strong defence
buildings, such as heavy laser turrets, to ensure that themissile silos are not destroyed
during their construction.

B. Exploiting opponent models

We incorporate means for exploiting opponent models in the game AI of the S game.
Our implementation of exploiting opponent models consists of two parts. First, we classify
the opponent player, based on actual observations in online play. Second, we use the classi-
fication of the opponent player, for the purpose of improving the effectiveness of the game
AI. e two parts of our implementation are discussed below.

Opponent classification: e procedure to classify the strategy of the opponent player is
as follows. During online play, the game state is polled once every two seconds. Subse-
quently, observations of each game state are used to classify the strategy of the oppo-
nent player. To this end, we incorporate the opponent classifiers that were established
previously by Schadd et al. () (see Section .). Adopted for the present experi-
ment, a separate classifier for each game strategy tracks the probability of the game
observations resulting from the particular strategy. If the classification probability of
one of the classifiers reaches a predefined threshold value, the opponent is classified
as following the strategy that fits the game observations with the highest probability. If
the classification probability of none of the classifiers reaches the predefined threshold
value, no opponent classification is performed, as we do not consider the classification
as potentially reliable.

Using the classification: Weuse the opponent classification for adapting the game strategy
in an informed manner. Naturally, knowledge on which strategy the opponent player
employs, is only of use if there aremeans to exploit this knowledge. In our experiment,
we assume that for each opponent classification, a counter strategy is available that
can be employed directly. We surmise that () the aircraft strategy will win the game
when pitted against the nuke strategy, () the nuke strategy will win the game when
pitted against the k-bot strategy, and () the k-bot strategy will win the game when

7.3 | Exploiting opponent models in SPRING 125

Figure .: Relationship between the predefined game strategies.

pitted against the aircraft strategy. e surmised relationship between the three game
strategies is illustrated in Figure ..

When the domain knowledge on suitable counter strategies is confirmed in our ex-
periment, it can be used together with the opponent classification for intelligently
adapting the game strategy in online play. Specifically, upon opponent classification
the adaptation mechanism intelligently switches the game strategy, on the basis of the
available domain knowledge.

.. An experiment with exploiting opponent models

In this subsection, we report on an experiment with exploiting opponent models in the
S game. We first describe (A) the experimental setup. Subsequently, we discuss (B)
the obtained experimental results.

A. Experimental setup

In our experiment, two identical game AIs are pitted against each other on the map ‘Small-
Divide’, the default map of the S game. One game AI exploits the available opponent
models, the other game AI does not exploit the available opponent models. e goal of the
experiment is to determine to what extent exploiting opponent models allows a game AI
to increase its performance. e performance is expressed by the number of games that
are won by the AI that exploits the models. All three game strategies were implemented
in the game AI. Subsequently, we implemented () the previously described technique for
opponent classification (see Section .), and () the previously described mechanism for
using the opponent classification (see Subsection ..). Upon classification of the opponent
player, the adaptation mechanism exploits knowledge on which counter strategy is effec-
tive against which opponent. As expected, it thereby is able to switch effectively the game
strategy.

126 Opponent modelling

Player  / Player  Aircraft K-Bot Nuke Informed AI

Aircraft -  /   /   / 
K-Bot  /  -  /   / 
Nuke  /   /  -  / 
Informed AI  /   /   /  -

Table .: Results of exploiting opponent models in S.

e general experimental procedure is as follows. First, we determine the effectiveness
of each of the three game strategies being pitted against another strategy. Second, each of
the three strategies is being pitted against an adaptive ‘informed AI’, which exploits domain
knowledge on the effectiveness of the game strategies. Each experimental trial is repeated
ten times. e informed AI follows strictly one of the three predefined game strategies. e
only difference in behaviour is that in order to provide the opponent classification technique
with information, the game AI constructs several scout units that attempt to observe the
base of the opponent. We ascertained that the construction of these scouting units has no
effect on the playing strength ofAI, as scout units are highly vulnerable, and can be produced
with negligible investment in time and resources.

To focus solely on the effect of adapting the game strategy, in our experiment each player
is provided with unlimited resources for constructing units and buildings. e informed AI
is initialised with the nuke strategy, for this strategy may be regarded as exhibiting a mode-
rate playing strength, and can be adapted straightforwardly in online play. Classification of
the opponent player is attempted once every two seconds. e threshold value for classifi-
cation of the opponent is ..

B. Results

Table . gives an overview of the obtained experimental results. Each cell of the table lists
the number of games that arewon / lostwhenpitting player  (row) against player  (column),
respectively.

e results confirm our assumption that, when the opponent models are not exploited,
the aircraft strategy outperforms the nuke strategy. In addition, we observe that the nuke
strategy outperforms the k-bot strategy, and that the k-bot strategy outperforms the aircraft
strategy. is knowledge is exploited by the informed AI.

In addition, the results reveal that when the adaptive ‘informed AI’ intelligently exploits
the opponent classification, the effectiveness of switching strategy is one hundred per cent.
at is, by performing an informed switch in strategy, the informed AI is able to win all
games against all three opponents.

7.4 | Chapter conclusion 127

.. Discussion of the results
is subsection provides a discussion of the experimental results. We discuss (A) the obtai-
ned experimental results in general terms. Subsequently, we draw (B) experimental conclu-
sions of the present research.

A. General discussion

In our experiment, we observed that in the complex S game, establishedmodels of the
opponent player can be exploited successfully, to adapt the employed game strategy in such
a way that it outperforms the opponent player. To focus on the effect of adapting the game
strategy on the basis of the opponent classification, we simplified the conditions inwhich the
S game is being played. Most importantly, we did not require the game AI to perform
complicated resourcemanagement tasks.Moreover, the game strategies that were under in-
vestigation in the present researchwere simplified versions of actual strategies. For instance,
it is unlikely that a human player (or a competitive game AI) would follow the nuke strategy
without constructing any units for occasionally attacking the opponent player, since with-
out occasionally attacking the opponent a player would render his base relatively vulnerable.
So, we note that our approach has not been validated under strict game-playing conditions.
Still, we posit that the obtained (save perfect) results may apply generically to games where
the intelligent adaptation of game strategy plays an important role in the outcome of the
game. is covers the majority of strategic games.

We note that the opponent models that were exploited in the present research were
handcrafted. is may limit the effectiveness when exploiting the opponent models in ac-
tual play, as the models were not updated periodically to include recent game observations.
In Chapter  we will experiment with opponent models that are generated and updated au-
tomatically, based on observations of a multitude of games.

B. Experimental conclusions

Our experimental results with exploiting opponent models in the S game, show that
intelligently exploiting the established opponentmodels leads tomore effective behaviour in
online play. e obtained results reveal the importance of gathering domain knowledge on
exactly which strategy is effective in play against a particular opponent. In our experiment,
the informed game AI exploits successfully this knowledge once behaviour of the opponent
is classified. Afterwards, it is able to outperform consistently the opponent player. From
these results, we may conclude that the described approach to exploiting opponent models
may be applied successfully in this RTS game to adapt online the strategy that is followed by
the game AI.

7.4 Chapter conclusion

In this chapter we discussed the technique that enables game AI to establish and exploit
models of the opponent player, viz. opponent modelling. Experiments with establishing op-

128 Opponent modelling

ponent models in the complex S game revealed that for the game relatively accurate
models of the opponent player can be established. Furthermore, an experiment with exploi-
ting opponentmodels showed that in the S game, exploiting the established opponent
models in an informed manner leads to more effective behaviour in online play. From these
results, wemay conclude that opponentmodellingmay successfully be incorporated in game
AI that operates in a complex video game, such as S.

Now that we have investigated each of the three main components of case-based adap-
tive game AI, viz. () an evaluation function (see Chapter ), () an adaptation mechanism
(see Chapter ), and () opponent modelling (the present chapter), in the next chapter we
will investigate how the three main components can be integrated into a complete imple-
mentation of case-based adaptive game AI.

8
Integrating the three components

Chapter  reports on the experiments that integrate the three main components of case-
based adaptive game AI: () an evaluation function, () an adaptation mechanism, and ()
opponentmodelling.Wefirst outline our proposal for integrating the three components into
a complete implementation of case-based adaptive game AI (Section .). As a result of the
outlined proposal, we discuss how to incorporate opponent modelling in the implementa-
tion of case-based adaptive game AI (Section .). Next, we report on two experiments that
test case-based adaptive game AI in an actual video game (Section .). en, we give an
analysis of the practical applicability of case-based adaptive game AI (Section .). Finally,
we present the chapter conclusions (Section .).

8.1 How to integrate the three components

In this section, we first reflect concisely on the three main components that were investi-
gated in the previous chapters, viz.() an evaluation function, () an adaptation mechanism,
and () opponent modelling. We focus specifically on which steps need to be taken to inte-
grate each components into case-based adaptive game AI. e reflection leads to our pro-
posal for a complete implementation of case-based adaptive game AI.

Evaluation function: In Chapter  we investigated an evaluation function for rating the
game state in the complex S game. We showed that the evaluation function
is able to accurately predict the outcome of a S game. As such, the evaluation
function may be incorporated directly into case-based adaptive game AI.

Adaptation mechanism: In Chapter  we investigated an adaptation mechanism that al-
lows video game AI to adapt to game circumstances. e mechanism performs
adaptations on the basis of game observations that are gathered in a case base, and

is chapter is based on the following publication.
Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (a). Opponent modelling for case-based
adaptive game AI. Entertainment Computing, ():–.

130 Integrating the three components

in addition receives input of an evaluation function. ereby, we essentially establis-
hed a basic form of case-based adaptive game AI; one that incorporated two main
components (only the component ‘opponent modelling’ was still missing, see below).
An experiment that tested the basic form (with two components only) of case-based
adaptive game AI in the S game, revealed that the basic case-based adaptive
gameAI could play a strong game.at is, from game observations that were gathered
in the case base, the basic case-based adaptive game AI was able to deduce strategies
that could effectively defeat its opponent AI.

en we noted that the final outcome of a S game is largely determined by the
strategy that is adopted in the beginning of the game. is exemplifies the importance
of initialising the game AI with effective behaviour. In order to do so, the basic case-
based adaptive game AI needs to be extended with the ability to establish and exploit
models of the opponent player; this may be done systematically and in the best way
by means of incorporating opponent modelling.

Opponent modelling: In Chapter  we investigated opponent modelling in the S
game. We showed that in the complex S game, relatively accurate models of
the opponent player can be established. In addition, we showed that the models can
be exploited to evoke effective behaviour in online play. e results revealed that op-
ponentmodellingmay successfully be incorporated in the AI of complex video games,
such as S. By extending the basic case-based adaptive game AI with the ability
of opponentmodelling, a complete implementation of case-based adaptive gameAI is
established. Naturally, the question remains how exactly opponent modelling should
be incorporated into the case-based adaptive game AI. Our general proposal to this
end is discussed below.

Our general proposal for incorporating opponent modelling into the case-based adap-
tive game AI is to make the component an integral part of case-based adaptation. at is,
let the component exploit the case base that is built from a multitude of observed games,
for the purpose of automatically establishing models of the opponent player. Subsequently,
exploit the established models for the purpose of allowing the adaptation mechanism to
adapt more intelligently the game AI to game circumstances. e adaptation process, we
propose, is performed in two steps. First, classify in online play the opponent player. Se-
cond, exploit the classification together with previous observations that are gathered in the
case base, to reason on the preferred game strategy. is latter proposal is similar to work
by Van der Heijden et al. (), who successfully implemented opponent modelling in a
relatively simple mode of the ORTS game. Discussed next is how we implement the general
proposal for incorporating opponent modelling into the case-based adaptive game AI.

8.2 Incorporating opponent modelling

In this sectionwe discuss howwe incorporate opponentmodelling into the case-based adap-
tive game AI. In our approach to case-based adaptation of game AI, opponent models are

8.2 | Incorporating opponent modelling 131

established automatically, on the basis of a case base of game observations. Our goal of ex-
ploiting the opponent models is to improve the effectiveness of the adaptive game AI. We
first describe how we establish models of the opponent player (..). Subsequently, we dis-
cuss how we exploit models of the opponent player (..).

.. Establishing opponent models
In our approach to case-based adaptation of game AI, opponent models are established au-
tomatically. It happens on the basis of game observations gathered in the case base. e
models of the opponent players are established as follows. We start defining and selecting
features of an opponent’s high-level strategic behaviour. As a first step to establishing op-
ponent models, the features are defined and selected by the researchers, to reflect their ex-
pertise with the game environment. We admit that by manually defining and selecting the
game features we may restrict the accuracy of the models. e investigation of further im-
provements with respect to the definition and selection of features is considered a topic for
future research.

At the start of a S game, the strategy that an opponent will adopt is unknown, as
() players of the game remain anonymous, and () starting conditions are identical for each
player of the game (i.e., each player is initially provided with only one unit, the Commander
unit). As a result, opponent models need to be established solely on the basis of later, in-
game observations on the strategic behaviour of an opponent player.

Strategic behaviour, e.g., the opponent’s preference of unit type, the focus of an oppo-
nent’s technological development, the strength of his economy, and the aggressiveness of the
opponent, can generally be inferred from observing the values of selected features during
actual play. e features that are selected for the present research are given below. We note
that the features are different from those used in earlier chapters, as the task of modelling
an opponent’s strategy is distinct from, e.g., comparing the similarity of game observations.
Also, we note that no features that concern ship units are incorporated, as our experiments
are performed on a map without water areas. For convenience of the reader, in Appendix B
we will provide an overview of all features that are used in the three main components of
case-based adaptive game AI.

. Number of observed k-bot units.

. Number of observed tank units.

. Number of observed aircraft units.

. Number of technologically advanced buildings (i.e., level  or higher).

. Number of metal extractors.

. Number of solar panels.

. Number of wind turbines.

. Time of first attack on one of the metal extractors.

. Time of first attack on one of the solar panels.

. Time of first attack on one of the wind turbines.

132 Integrating the three components

e first three features express the global strategic preference of an opponent, which is
important in determining placement of units and buildings. For instance, in the map Small-
Divide, the mountain ridges can be crossed by k-bot units, but not by tanks. If the game AI
can deduce that the opponent is not constructing k-bot units, it can safely distribute resour-
ces for a purpose other than defending the mountain passes.

e fourth feature expresses the technological development of a player. If the game AI
can deduce that the opponent is constructing advanced units, it can respond by constructing
such units too.

e fifth, sixth, and seventh feature express the strength of an opponent’s economy, and
by implication, the strength of the opponent’s army. If the gameAI can deduce that the oppo-
nent’s economy is relatively weak, it can safely shift the balance from constructing defensive
units to offensive units.

e eighth, ninth, and tenth feature express the aggressiveness of the opponent player. If
the gameAI can deduce that the opponent follows an aggressive playing style, which implies
that it launches many relatively small attacks, it can attempt to build defences to withstand
the small attacks, and simultaneously construct a relatively strong army.e time of the first
attack is expressed in terms of time steps that have passed since the game started. A time
step is defined as . seconds (cf. Chapter  and ).

In establishing the opponent models, we prefer to exploit the models in a relatively early
state of playing the game.e reason for this preference is straightforward. In S, game
actions that are performed early in the game will have a relatively strong impact on the final
outcome of the game. As a result, when knowledge on the opponent player is available in
a relatively early state of the playing the game, then the game AI can already steer its own
behaviour towards arriving at the preferred game state. To this end, we gather feature data
of observed opponent behaviour in a specific time step that is relatively early in the game,
but that is not too early for observing strategic choices of the opponent player. In the later
described experiments, opponent models will be established after  time steps of play,
which amounts to approximately ten minutes of real-time play. Based on the feature data
gathered when observing numerous games, opponent models are generated by clustering
the feature data via the standard k-means clustering algorithm (Hartigan and Wong, ).
To determine automatically the difference in opponent behaviour expressed by the feature
data, the Euclidean distance measure is incorporated in the applied clustering algorithm.

.. Exploiting opponent models
We exploit opponent models as follows. We extend the offline processing phase of the ba-
sic case-based adaptive game AI (see Section .), by labelling each game in the case base
with the classification of the opponent player against whom the game AI was pitted. is
process is performed by a classification algorithm, which classifies the game AI’s opponent
on the basis of observed feature data of the particular game. As we establish opponent mo-
dels by a clustering of feature data (see Subsection ..), the classification of an opponent
is straightforward; namely by calculating the nearest neighbouring cluster of opponents for
a given game observation. e number of available classes is determined automatically by
the clustering algorithm.

8.2 | Incorporating opponent modelling 133

e classification of the opponent player is exploited for (A) initialisation of game AI,
and (B) online strategy selection in actual play. is is discussed below.

A. Initialisation of game AI (with OM)

In our experiments, an adaptive game AI will be pitted against various opponent players
(cf. Section .). e procedure to intelligently select the strategy initially followed by the
adaptive game AI consists of two steps. e steps are as follows.

First, based on previous observations, we determine which opponent the game AI is
likely to be pitted against in a new game. As an initial step to determining the opponent
player, in our experiments we surmise that the game AI will be pitted against the opponent
which over the course of numerous games has been observed themost.We note that this is a
rough assumption which may be enhanced by incorporating additional domain knowledge,
such as the likelihood of opponents adapting their own behaviour after play of a successful
(or an unsuccessful) game.

Second, we initialise the game AI with the strategy that in previous games has proven
most effective against this particular opponent. We consider a game strategy effective when
in previous play it achieved a set goal criterion (thus, the game AI will never be initialised
with a predictably ineffective strategy). e goal criterion can be any metric to represent
preferred behaviour (cf. Subsection ..). In our experiments, the goal criterion is a desired
fitness value. For instance, a desired fitness value of one hundred represents a significant
victory.

B. Online strategy selection (with OM)

Here we select online which strategy to employ when a transition in the phase of the game
takes place (cf. Subsection ..). In the case that no opponent models are available, the
procedure is as described in Subsection ...

In the case that opponent models are available, there is an additional decision point for
game adaptation besides at the occurrence of phase transitions, namely at the moment at
which the opponent player can be classified accurately. is moment is the exact time step
at which the opponent models were established previously (see Subsection ..). We recall
that the game AI is initialised with a game strategy on the basis of a prediction on who the
opponent playerwill be.e game strategy is adapted if the initial prediction of the opponent
player is different from the actually observed opponent.

Furthermore, to compare with an increased reliability the similarities between the cur-
rent game, and games that are gathered in the case base, the classification of the opponent
player is incorporated in the process of selection of the game strategy (see Subsection ..).
e classification of the opponent player is incorporated as a means to narrow down the
preselection process. is is performed by preselecting the N games with the smallest ac-
cumulated fitness difference with the current game, that as an additional requirement have
also been played against the actually observed opponent.

We assume that the proposed application of opponent modelling allows for exploiting
game strategies more effectively. e experiments that are described next investigate our
assumption.

134 Integrating the three components

8.3 Experiments with case-based adaptive game AI

is section reports on two experiments that test our complete implementation of case-
based adaptive gameAI.We first describe the experimental setup (..). Second, we discuss
how the performance of the case-based adaptive gameAI is assessed (..).ird, we report
on the generated opponentmodels (..). Fourth, we give the experimental results from the
two experiments (..). Finally, the section is concluded by a discussion of the results (..).

.. Experimental setup

e experimental setup is largely identical to the setup of the first experiment that was re-
ported on in Chapter . For brevity, we here describe only the global procedure and discuss
the differences between the current and the previous setup. For additional details we refer
the reader to Subsection ...

For readability of the present chapter, we split the first experiment that was reported on
in Chapter  into two experiments. In the first experiment, the case-based adaptive game
AI is pitted against the original AAI opponent. In the second experiment, the case-based
adaptive game AI is pitted against (sets of) randomly generated opponents. Before the game
starts, offline processing of the case-base, as well as selecting the initial strategy, is perfor-
med according to the procedure described in Section . (when no opponent models are
available), or as described in Section . (when opponent models are available). Online (i.e.,
while the game is in progress), strategy selection is performed at every phase transition.

Opponent models are established after  time steps of play (see Subsection ..),
which amounts to approximately ten minutes of real-time play. e parameter k for the
k-means clustering of opponents is set to ten per cent of the total number of games. Empty
clusters are removed automatically, in case the particular value of k was set too large.

.. Performance assessment

As the experimental setup is largely identical to the setup of the first experiment that was
reported on in Chapter , we decided to do the performance assessment largely identical
too. We recall that in the first experiment of Chapter , we set the case-based adaptation
mechanism to win the game (i.e., obtain a positive fitness value). In the experiment, the
effectiveness of the mechanism was expressed by the number of games that were won by
the friendly player when it used the case-based adaptation mechanism. is measure for
performance assessment is also used in the present two experiments. For clarity, we note
that the present experiments have no relation to the second experiment that was reported
on in Chapter , as that experiment concerned difficulty scaling.

In Chapter , we performed the first experiment in what, for readability, we here distin-
guish as two modes. For the experiments reported on in the present chapter, we add a third
mode of adaptation. In the first mode, the case-based adaptationmechanism is disabled.We
refer to the first mode as ‘disabled’ adaptation. In the second mode, the case-based adapta-
tion mechanism is enabled. We refer to the second mode as ‘basic’ adaptation, as the mode

8.3 | Experiments with case-based adaptive game AI 135

SmallDivide eRing MetalHeckv

 Opponent models   
Typical playing style Defensive Defensive Aggressive
Building preference Advanced buildings Advanced buildings No advanced buildings
Unit preference Tank units K-bot units Tank units

Table .: Overview of the characteristics of the generated opponent models.

essentially implements a basic form of case-based adaptive game AI (i.e., without opponent
modelling) (see Section .).

e third adaptation mode implements a complete form of case-based adaptive game
AI, by incorporating opponent modelling as mentioned in Section .. We refer to the third
mode as ‘OM’ adaptation. In the present experiments, we compare the results obtained with
the ‘disabled’ and ‘basic’ adaptation mode, with the results obtained with the ‘OM’ adapta-
tion mode.

.. Generated opponent models

Opponent models were generated based on observations gathered from play on three dis-
tinct maps. Eachmapwas observed over  games (cf. Chapter  and ). On themap Small-
Divide, nine opponent models were generated automatically. On the map eRing, eight
opponent models were generated automatically. On the map MetalHeckv, nine opponent
models were generated automatically. We list them in Table . together with their charac-
teristics.

e generated models reveal that opponents observed on the map SmallDivide typically
employ a defensive playing style, have a preference for constructing advanced buildings, and
have a preference for constructing tank units. Opponents observed on the map eRing are
typically similar to those observed on the map SmallDivide, with the difference that they
have a preference for constructing k-bot units, instead of tank units. Opponents observed on
the map MetalHeckv typically employ an aggressive playing style, do not have a preference
for constructing advanced buildings, and have a preference for constructing tank units.

.. Results of game adaptation

In this subsection, we give the results of the two experiments. A general discussion of the
obtained results is provided in Subsection ...

Table . gives an overview of the results of the first experiment performed in the S
game. In the experiment, the case-based adaptive game AI was pitted against the original
AAI game AI on the three different maps. e first column of the table lists the adapta-
tion mode of the case-based adaptive game AI. e second column lists how often the trial
was repeated. e third and fourth column list how often the goal was achieved in absolute
terms, and in terms of percentage, respectively.

136 Integrating the three components

SmallDivide
Adaptation mode Trials Goal achv. Goal achv. ()

Disabled   
Basic   
OM   

eRing
Adaptation mode Trials Goal achv. Goal achv. ()

Disabled   
Basic   
OM   

MetalHeckv
Adaptation mode Trials Goal achv. Goal achv. ()

Disabled   
Basic   
OM   

Table .: Effectiveness of case-based adaptive game AI against the original opponent.

e results reveal that when pitted against the original AAI game AI on the map Small-
Divide, the effectiveness of case-based adaptive game AI increases substantially when op-
ponent modelling techniques are incorporated (, compared to  without opponent
modelling). Also on the maps eRing and MetalHeckv the effectiveness increases when
opponentmodelling techniques are incorporated (, compared to , and  compared
to , respectively). ese results indicate that incorporating opponent modelling techni-
ques indeed increases the effectiveness of case-based adaptive game AI. Figure . displays
the obtained median fitness value over all game trials against the original AAI opponent on
the map SmallDivide, as a function over the relative game time.

Table . and Table . give an overview of the results of the second experiment perfor-
med in the S game. In the experiment, the case-based adaptive game AI was pitted
against random opponents, i.e., against the original AAI initialised with randomly genera-
ted strategies. e legend of Table . is equal to that of the first experiment. e legend of
Table . is as follows. e first column of the table lists the label of the randomly genera-
ted opponent. e second column lists how often the trial was repeated. e third, fourth
and fifth column list how often the goal was achieved in absolute terms in the mode where
case-based adaptive game AI was disabled, where it operated in basic mode, and where it
incorporated opponent modelling techniques, respectively. In the two bottom rows of the
table, the average effectiveness over all trials is listed.

e results given in Table . reveal that when pitted against the original AAI game AI
on the map SmallDivide, initialised with randomly generated strategies, the effectiveness of
case-based adaptive game AI increases significantly when opponent modelling techniques

8.3 | Experiments with case-based adaptive game AI 137

SmallDivide
Adaptation mode Trials Goal achv. Goal achv. ()

Disabled   
Basic   
OM   

eRing
Adaptation mode Trials Goal achv. Goal achv. ()

Disabled   
Basic   
OM   

MetalHeckv
Adaptation mode Trials Goal achv. Goal achv. ()

Disabled   
Basic   
OM   

Table .: Effectiveness of case-based adaptive game AI against random opponents.

SmallDivide

Opponent Trials Adaptation mode
Disabled Basic OM

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

Goal achv. avg.   
Goal achv. avg. ()   

Table .: Effectiveness of case-based adaptive game AI against sets of random opponents.

138 Integrating the three components

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

Opponent Modelling Basic Disabled

Percentage of game time

M
ed

ia
n

fit
ne

ss
 va

lu
e

ov
er

 g
am

e
tri

al
s

Figure .: Median fitness value over all game trials against the original AAI opponent on the map
SmallDivide, as a function over the relative game time.

are incorporated (, compared to  without opponent modelling) (cf. chi-square test,
Cohen, ). On themapseRing andMetalHeckv, the effectiveness of case-based adap-
tive game AI remains stable when opponent modelling techniques are incorporated (,
compared to ), or increases (, compared to ), respectively. ese results confirm
our previous indication that applying opponent modelling techniques generally increases
the effectiveness of case-based adaptive game AI.

e results given in Table . reveal an analogous, positive trend. at is, when case-
based adaptive game AI is pitted against sets of randomly generated opponents on the map
SmallDivide, the effectiveness of case-based adaptive game AI increases when opponent
modelling techniques are incorporated (, compared to  without opponent model-
ling).

.. Discussion of the results

is subsection provides a discussion of the experimental results. We observed that by in-
corporating opponentmodelling techniques, the case-based adaptive gameAIwas generally

8.4 | Practical applicability 139

able to increase its effectiveness. However, in some circumstances, the increase in effective-
ness was relatively modest, and in one situation the effectiveness remained stable. An ana-
lysis of this phenomenon shows that our proposed use of opponent modelling works best
in circumstances where gameplay is highly strategic (e.g., the map SmallDivide), compa-
red to circumstances where strategic gameplay is a matter of less importance (e.g., the map
eRing). We therefore conjecture that to increase the effectiveness in these circumstances,
() the opponent models should incorporate additional features that model in more detail
facets of the opponent behaviour. In addition, improved results may be established () by
incorporating knowledge on how heavily the features of themodels should be weighted, and
() by investigating the principal features for certain tasks, for instance by applying principal
component analysis (Pearson, ).

Naturally, the case-based adaptive game AI may still be confronted with an opponent
that it has not observed previously. In this situation, the inherent generalisation that is pro-
vided by the clustering of opponent models may already have led to the game AI being ini-
tialised with a strategy that is also effective against the previously unobserved opponent.
Should the strategy still be ineffective, then it can be adapted during online play. To conti-
nue increasing the robustness of case-based adaptive game AI, it may be beneficial to track
dynamically whether the projected effectiveness of applying a certain strategy is met, and
when it is necessary adapt the strategy directly. In any case, the next time that offline proces-
sing is performed, the new game will be included in the case base. As a result, the previously
unobserved opponent will be covered in the opponent models, and accordingly game AI
that is predictable more effective will be generated automatically.

8.4 Practical applicability

In this section we give an analysis of the practical applicability of case-based adaptive game
AI. We first discuss the topic of scalability (..). Subsequently, we describe ways of dea-
ling with imperfect information in video-game environments (..). Next, we outline the
generalisation of our approach to different games (..). Finally, we discuss the possible
acceptance of the approach by game developers (..).

.. Scalability
In experiments discussed in the thesis we demonstrated the effectiveness of case-based
adaptive game AI operating in an actual video game. However, there is one aspect of the
approach that is not evaluated, namely how much the performance of the approach varies
when the size of the case base changes. Basically, we have presented a single point in the
learning curve of the system, while the shape of the curve remains to be investigated. Here,
two topics are of importance.

First, the effectiveness of behaviour established via a case-based approach largely de-
pends on the quality of the cases that are gathered in the case base. For our setup, where
game strategies are established from pseudo-randomised self-play, our insight is that for
each map several hundred games need to be observed before effective behaviour can be es-

140 Integrating the three components

tablished. In practice, case-based adaptive game AI may be expected to be incorporated in
multi-player games. In these games, the case base will grow rapidly, based on observations
of many different players competing against other distinct players. Analogously, the case
base may be expected to grow rapidly to incorporate qualitatively effective cases.

Second, the computational efficiency of case-based adaptive game AI may be hampered
by a large size of the case base. In our current setup we were able to establish computatio-
nally efficient online adaptation, by performing offline a processing of game observations.
To ensure that this procedure remains feasible with increased data sizes, one may opt to
enhance the generalisation performed when clustering observations, for instance, by incre-
asing the role of opponent modelling in the clustering process. In addition, one may focus
on improving the efficiency of the clustering process, for instance, by applying tree-indexing
structures (e.g., kd-trees (Bentley, ) or cover trees (Beygelzimer et al., )). Indeed,
one may opt to reduce specifically the size of the case base, for instance, by offline data
compression and subsequent online data decompression (Abou-Samra et al., ), and by
automatic condensation of the case base (Angiulli and Folino, ).

.. Dealing with imperfect information

GameAI inmodern video games usually operates in an imperfect-information environment.
is characteristic of the environment provides a serious challenge for gameAI. However, in
video game practice, the fact that a game presents an imperfect-information environment is
not an issue.e reason for this phenomenon is quite conspicuous; game developers choose
where necessary, or for the sake of convenience, to sidestep the challenge by providing game
AI with perfect information of the environment (Millington, ). As information is ex-
ploited that strictly speaking should not be available to the game AI, from a purist perspec-
tive, this is regarded as a form of cheating behaviour. As stated before (see Subsection ..)
we oppose this opinion. Still, as a scientific endeavour, it certainly is interesting to establish
effective, strictly non-cheating AI for video games that present an imperfect-information
environment.

However, as stated in Chapter , one of the goals for providing entertaining game AI
is to obtain effectiveness without cheating obviously. Game AI which executes actions that
are in principle unavailable, will not be regarded as entertaining. By contrast, game AI that
exploits perfect information discreetly in order to provide challenging gameplay, will be
generally regarded as entertaining.

In our research we investigated to some extent how effective game AI can be establis-
hed in a video game with an imperfect-information environment. e evaluation function,
discussed inChapter , incorporated a straightforwardmechanism tomap the imperfect ob-
servational data to a prediction of the perfect observational data. Obtained results showed
that in an imperfect-information S environment, the accuracy of the evaluation func-
tion approaches that of the function in a perfect-information environment. With regard to
opponent modelling, discussed in Chapter , we showed that relatively accurate models of
the opponent player can be established in the imperfect-information S environment.
We leave it for future research to expand our implementation to incorporate the three com-

8.4 | Practical applicability 141

ponents into a case-based adaptive game AI for S, with the additional requirement
that the game AI has to operate on the basis of strictly imperfect information.

If we were to propose an approach to demonstrate case-based adaptive game AI in a
video gamewhere only imperfect information is available, our proposal would be to enhance
the role of opponentmodelling. Consider, for instance, an imperfect-information RTS game.
Here, the game strategy of the opponent player will be unclear in the beginning of the game.
However, at the end of the game, when the battlefield is revealed, most players will be well
able to deduce the game strategy that was followed by the opponent. On the basis of this
deduction, the game AI can a posteriori map imperfect observational data to models of the
opponent’s behaviour. e next time that a game is played, these mappings can be used
in the game to classify relatively early the opponent player, and adapt the game strategy
accordingly.

As the proposal resembles how most human players adapt to opponent behaviour over
the course of playing a video game many times (i.e., optimise the own game strategy, while
considering the partially observed opponent strategy), we surmise that this proposal may be
suitable for establishing effective behaviour in imperfect-information video games.

.. Generalisation to different games

We demonstrated case-based adaptive game AI in an actual, complex video game: S.
Indeed, solely on the basis of our experiments we may not draw generic conclusions that
apply to all games. However, wewould like to reason that case-based adaptive gameAI is not
bound to specific game genres where it regards offline processing of game observations. For
all genres, game observations can be gathered in a case base. is case base can be utilised
for providing feedback on distinct strengths and weaknesses of a player, and can provide
inexpensive insight into the balance of a game. us, it can help in testing and debugging
the game.

For online adaptation, case-based adaptive game AI has been shown applicable to an
actual RTS game with high complexity. By extrapolation, case-base adaptive game AI is also
applicable to different games, and to different game genres, that use game AI with a com-
plexity less than that of RTS games. is is a significant part of video games that are on the
market today. Indeed, in implementation of the approach one needs to consider the charac-
teristics of the game under investigation. For instance, in action games such as first-person
shooters (FPS), gameplay is more reactive, and is oriented on tactics (instead of strategy). In
these games, case-based adaptive game AI should poll the game state frequently, and analo-
gously to modelling the effectiveness of game strategies, it should extensively keep track of
the effectiveness of game tactics. In hindsight, case-based adaptive game AI may be suitable
for implementation in the Q III CTF game environment, to adapt the team-oriented
behaviour in online play (see Chapter ).

Here, we make special mention of so-called serious games. ese games focus on ex-
ploiting game environments for a purpose other than pure entertainment, for instance, for
training of medical professionals. Case-based adaptive game AI may be incorporated in se-
rious games to monitor the player’s behaviour in the game environment. Dependent on ob-

142 Integrating the three components

servations on the progress of the player, case-based adaptive game AI can be used to adapt
the game environment to ensure that the training goals are achieved.

.. Acceptance by game developers
Game developers often emphasise that advanced game AI is needed to create game charac-
ters that are able to operate consistently in modern video-game environments (i.e., react
believably, in a human-like manner) (Rabin, b; Millington, ; Church and Pfeifer,
). As game environments are becoming more complex and more realistic, an ineffec-
tiveness of the game AI will become directly apparent to the player. For instance, a recent
trend inmany games is that of deformable or dynamically changing terrain (Rabin, ). As
a result, game developers strictly require the ability of game characters to adapt adequately
to changing circumstances.

To operate consistently in modern video games, the decision-making processes of game
AI need to become more advanced. We observe in recent games that, in fact, they are.
For instance, the video-game series S (-) from leading publisher Electronic
Arts (EA) incorporates complex locomotion that is able to exploit rapidly physical proper-
ties of the presented game environment (Wesley, ). Games such as O ()
and the game series T S (-) incorporate reputation systems to model the
behaviour of game characters, and exploit these models to respond believably to in-game
events (Evans, ; Sellers, ). e video game H  () uses an advanced scrip-
ting technique called ‘objective trees’ (Isla, ).e technique follows a declarative autho-
ring paradigm to ensure that when a player encounters game characters, the characters do
not only behave tactically intelligent, but also consider previous experiences with the game
environment, and thereby attempt to establish a balanced challenge for the player.

An advanced form of game AI is found in the critically acclaimed video game
S (), where behaviour of both game characters as well as the game environment is
tailored to fit the in-game behaviour of the human player (Grundstrom, ). In fact, the
game’s approach to AI reminds one of case-based adaptive game AI. In a recent interview,
Wright (), the designer of the game, was quoted stating:

“S as a program is not creative at all, but it does a very good job of distilling
the creativity of millions of individuals and presenting them back to you. I think
you can get a lot more traction using that approach, and I think reversing that
we’re also starting to look at how we can analyze humanmetrics inside of a game
or any kind of computer experience, and then change that experience to customize
it to that person. Using the intelligence of other people is kind of the base data set
for that. So I think we’re going to see a lot more progress in what we think of as AI
from that approach. For the future, there are still people out there fundamentally

 A related observation is that game developers often spend a considerable amount of time in fine-tuning a
game’s challenge. For instance, at the time of writing, the game S II (, expected) is being fine-
tuned for already nearly two years. AI techniques, such as automatically generated evaluation functions to ex-
press the strengths and weaknesses of units, may assist game developers in this important and time-consuming
task.

8.5 | Chapter conclusions 143

trying to recreate human intelligence... but they’re still on this very slow, linear
slope, whereas the other approach is really taking off exponentially.”

Considering the necessity of advanced game AI, as well as the observed trend to incor-
porate advanced game AI into actual, commercially released games, we are optimistic that
approaches such as the one investigated in our research have potential to be accepted by
game developers. In designing our approach to case-based adaptive game AI, we addressed
specifically the aspect of rapid adaptation, while keeping in mind that for reliable adapta-
tion theAI systemneeds to be controllable by, and predictable to the game developers.ese
characteristics may appeal to game developers, as it meets the industry belief that behavi-
our of an artificially intelligent system should lie firmly in the hands of the developers (Isla,
).

8.5 Chapter conclusions

In this chapterwe discussed two experiments that brought together the three components of
case-based adaptive game AI: an evaluation function, an adaptation mechanism, and oppo-
nent modelling. We observed that without opponent modelling, case-based adaptive game
AI already provides a strong basis for adapting rapidly and reliably the player’s behaviour in
an actual video game: S (Chapter ). e present chapter focussed particularly on en-
hancing the approach by incorporating opponent modelling techniques.We performed two
experiments that tested the enhanced approach in the complex S game, and observed
an increased effectiveness of the player’s behaviour when the ideas on opponent modelling
were incorporated. From the results we may conclude that opponent modelling further im-
proves the strength of case-based adaptive game AI, and thus makes its implementation in
an actual video game even more worthwhile.

In the analysis of the practical applicability of case-based adaptive gameAI, we discussed
four topics, namely () scalability, () dealing with imperfect information, () generalisation
to different games, and () acceptance by game developers.

With regard to scalability, we noted that, in practice, the case base may be expected to
grow rapidly to incorporate qualitatively effective cases.We stated that care should be taken
to ensure that the approach remains computationally efficient with increased data sizes.

With regard to dealing with imperfect information, we discussed that, in practice, game
developers will opt generally to provide perfect information to the game AI. Still, an en-
hancement was proposed that may enable the case-based adaptation mechanism to operate
effectively in a strictly imperfect-information environment.

With regard to generalisation to different games, we discussed that our approach to
adaptive game AI may be applicable to games with a complexity equal or less than that of
RTS games. is is a significant part of video games that are on the market today.

With regard to acceptance by game developers, we discussed that we are optimistic on
case-based approaches to game AI being implemented in practice. Our optimism is based
on the described observation that game developers themselves have shown a clear necessity
for implementing advanced game AI. We noted that recently game developers started to
incorporate advanced game AI into actual, commercially released video games.

9
Conclusions

Chapter  provides a conclusive answer to the research questions and the problem state-
ment posed in Chapter . In the chapter we first restate and answer the five research ques-
tions (Section .). Subsequently, we translate the answers to the research questions to an
answer to the problem statement (Section .). Finally, we provide recommendations for
future research (Section .).

9.1 Answers to the research questions

In Section ., we formulated five research questions. is section provides an answer to
each of these questions, based on the conclusions from the previous chapters.

Research question : To what extent is incremental adaptive game AI able to
adapt rapidly and reliably to game circumstances in an actual video game?

e answer to the first research question is derived from Chapter . In the chapter, we
discussed that incremental adaptive game AI is commonly applied for creating adaptive
gameAI. Following the approach,we established theTEAMandTEAMmechanism for on-
line adaptation of gameAI.We testedTEAMandTEAM in the video gameQ III CTF,
and from our experimental results we may conclude that the mechanisms are capable of
adapting successfully to changes in the opponent behaviour.

However, application of TEAM and TEAM as an online learning mechanism is ham-
pered by occasionally very long learning times due to an improper balance between ex-
ploitation and exploration. is issue characteristically follows from the incremental adap-
tive game AI approach, which requires either () a high quality of the domain knowledge
used (which generally is unavailable to the AI), or () a large number of trials to learn effec-
tive behaviour online (which is highly undesirable in an actual video game). From results of
the investigation wemay therefore conclude that the characteristics of incremental adaptive
game AI prohibit our goal of establishing game AI capable of adapting rapidly and reliably
to game circumstances.

146 Conclusions

erefore, we examined an alternative for the incremental approach, which we coined
case-based adaptive game AI. For case-based adaptive game AI to be successful in an ac-
tual, complex video game, three main components are required. e three components are
() an evaluation function, () an adaptation mechanism, and () opponent modelling. e
components are the subjects of research question , , and .

Research question : To what extent can a suitable evaluation function for a
complex video game be established?

e answer to the second research question is derived from Chapter . In the chapter,
we reported on our evaluation function for the complex S game. We incorporated
machine learning techniques to automatically tune the evaluation function on the basis of
a case base of game observations. Experiments that tested the evaluation function showed
that just before the game’s end the function is able to predict correctly the outcome of the
game with an accuracy that approached one hundred per cent. Considering that a S
game may be won suddenly, and thus the outcome of the game is difficult to predict, this
is a satisfactory result. In addition, the evaluation function made fairly accurate predictions
before half of the game was played. From these results, we may conclude that a suitable
evaluation function for the complex S game can be established by exploiting a case
base of game observations.

Research question : To what extent can a mechanism be employed to provide
online adaptation of game AI?

e answer to the third research question is derived from Chapter . In the chapter,
we discussed an adaptation mechanism for video games. e mechanism aims at allowing
game AI to adapt rapidly and reliably to game circumstances. To this end, it is incorporated
in a framework for case-based adaptation. e mechanism exploits game observations that
are gathered in the case base to (A) generalise offline over observations, (B) initialise the
game AI with a predictably effective game strategy, and (C) adapt online the game AI to
game circumstances. e case-based adaptation mechanism was tested on three different
maps in the S game. Experiments that tested the adaptationmechanism in online play
showed that the mechanism can successfully obtain effective performance. In addition, the
adaptation mechanism is capable of upholding a draw for a sustained period of time. From
these results, we may conclude that the mechanism for case-based adaptation of game AI
provides a strong basis for adapting rapidly and reliably behaviour online, in an actual video
game.

Research question : To what extent can models of the opponent player be es-
tablished and exploited in a complex video game?

e answer to the fourth research question is derived from Chapter . In the chapter,
we discussed the technique that enables game AI to establish and exploit models of the op-
ponent player (i.e., opponent modelling). Experiments with establishing opponent models
in the complex S game revealed that for the game relatively accurate models of the
opponent player can be established. Furthermore, an experiment with exploiting opponent

9.2 | Answer to the problem statement 147

models showed that in the S game, exploiting the established opponent models in an
informed manner leads to more effective behaviour in online play. From these results, we
may conclude that opponent modelling may successfully be incorporated in game AI that
operates in actual video games, such as the complex S game.

Research question : To what extent is case-based adaptive game AI able to
adapt rapidly and reliably to game circumstances in an actual video game?

eanswer to the fifth research question is derived fromChapter . In the chapter, we re-
ported on the experiments that integrate the threemain components of case-based adaptive
gameAI, viz. () an evaluation function, () an adaptationmechanism, and () opponentmo-
delling. e experiments tested case-based adaptive game AI in the complex S game.
Without opponent modelling, case-based adaptive game AI already provided a strong ba-
sis for adapting rapidly and reliably the player’s behaviour in the game. In our case-based
approach to game adaptation, opponent models were generated automatically, on the basis
of player observations that were gathered in the case base. When enhancing the approach
by incorporating opponent modelling, in the experiments, we observed an increased effec-
tiveness of the player’s behaviour. From these results, we may conclude that opponent mo-
delling further improves the strength of case-based adaptive game AI, and thus makes its
implementation in an actual video game even more worthwhile. From the analysis of the
practical applicability of case-based adaptive game AI we may reason that the approach is
a strong candidate for incorporation in game AI of the future, i.e., in actual, commercially
released video games.

is leads to our answer to the fifth research question. By exploiting a case base of game
observations () to tune automatically an evaluation function, () to determine which game
adaptations are effective, and () to generate automatically opponent models, case-based
adaptive game AI for a complex video game such as S is able to adapt rapidly and
reliably to game circumstances. We demonstrated case-based adaptive game AI in an actual
video game.

9.2 Answer to the problem statement

In this section, we provide an answer to the problem statement posed in Chapter . Our
answer is based on the answers to the five research questions discussed in the previous
section.

Problem statement: To what extent can adaptive game AI be created with the
ability to adapt rapidly and reliably to game circumstances?

Experiments with the common approach to adaptive game AI, i.e., incremental adap-
tive game AI, illustrated that the approach can be applied to adapt game AI to some extent.
However, application of the incremental approach is limited, for characteristics of the ap-
proach prohibit the goal of establishing game AI capable of adapting rapidly and reliably
to game circumstances. We therefore proposed to investigate an alternative approach to

148 Conclusions

adaptive AI that comes without these characteristics. We coined the alternative approach
case-based adaptive game AI.

With respect to adapting rapidly, we noted that case-based adaptive game AI is capable
of exploiting gameobservations gathered in a case base for the purpose of instant application
in game circumstances. e approach builds on the ability to gather and identify relevant
game observations, and the ability to apply effectively these observations in similar game
circumstances. Our experiments demonstrated that case-based adaptive game AI may be
incorporated successfully in an actual video game, for the purpose of adapting rapidly to
game circumstances.

With respect to adapting reliably, we noted that considered game adaptations are evalu-
ated intensively within a case-based framework.e decision-making process of case-based
adaptive game AI may, in practice, be expected to be based on domain knowledge of high
quality, gathered from a multitude of observed games. Gathered domain knowledge is ex-
ploited for, among others, () rating the game state, () tracking the effectiveness of units
in the game, () adapting automatically the game AI, () scaling automatically the difficulty
level, and () modelling behaviour of the opponent player. As desired, case-based adaptive
game AI thereby provides considerable means for game developers to tailor reliably game-
play to the human player.

Given that case-based adaptive game AI is capable of adapting to game circumstances
rapidly and reliably, and considering that we demonstrated its effectiveness in an actual,
complex video game, we may conclude that the approach is a strong candidate to be incor-
porated in game AI of the future, i.e., in actual, commercially released video games.

9.3 Future research

e research presented in the thesis indicates several important and promising areas of fu-
ture research. In this section, we mention three of the most interesting areas.

Learning automatically relevant game features: In our research, we investigated case-
based adaptive game AI as a proof of concept. However, for none of the three main
components of case-based adaptive game AI we attempted to establish the best solu-
tion for our problemdomain. Indeed, for each component such an investigationwould
be a thesis in itself. Potentially the largest improvement in the performance of case-
based adaptive game AI, we expect, will result from an improved selection in the set
and weights of relevant game features (cf., e.g., iery and Scherrer, a,b). On the
one hand, the improved selection may be established by domain experts who exploit
their knowledge with the game. On the other hand, the improved selection may be
established by methods to learn automatically relevant game features. As video-game
environments are growing increasingly complex, we foresee that game developers will
increasingly utilise automatic methods to obtain inexpensive insight into relevant fea-
tures of the problem domain.

Multifaceted difficulty scaling: In our research we gave brief attention to the topic of sca-
ling the difficulty level to the human player. Our approach to difficulty scaling was

9.3 | Future research 149

straightforward. It was based on the assumption that players may regard game AI that
is capable of upholding a certain fitness value as challenging (e.g., upholding a value
that represents a draw position). e assumption should be validated if this form of
difficulty scaling were to be implemented in commercially released games. Moreover,
the challenge provided by a game is typically multifaceted. Our approach to difficulty
scaling adapts only the strategical challenge that is provided by the game AI. e-
refore, additional facets of challenge remain to be investigated. A case base of game
observations may prove instrumental to this investigation.

Adaptation of the game environment: Research in the domain of AI for video games is
focussed generally on learning behaviour for game characters. Experts recently poin-
ted out, however, that game characters often do not live long enough to benefit from
learning, and argue that it is difficult for human players to detect and understand that
game characters are in fact learning (Rabin, ). is certainly does not imply that
research efforts of many individuals have been in vain, as the design of a game can be
adapted to render the benefits of advanced AI more apparent. For instance, develo-
pers of the game S found that revealing directly what the AI is “thinking” makes
it much more apparent to the player when the AI is doing something smart - which
leads to higher satisfaction with the game AI (Lewis, ). Still, it is important to
take note of the given expert opinion.
Finally, we may conjecture that the game environment has the most significant effect
on a player’s satisfaction, and to a lesser extent the game characters present in that
environment. On this basis, we would like to propose that developed AI techniques
should be applied for the purpose of adapting the game environment itself, and not
so much for the purpose of adapting the behaviour of game characters in the envi-
ronment. An interesting and novel direction for future research (as well as for future
game design) may be tailoring actual games (i.e., the appearance of the environment,
its psychical properties, its rules, etc.) to a set of automatically generated models of
the player.

References

Aamodt,A. andPlaza, E. (). Case-based reasoning: Foundational issues,methodological
variations, and system approaches. AI Communications, ().

Abou-Samra, S., Comair, C., Champagne, R., Fam, S. T., Ghali, P., Lee, S., Pan, J., and Li,
X. (). Data compression/decompression based on pattern and symbol run length
encoding for use in a portable handheld video game system. USA Patent ,,.

Abt, C. C. (). Serious Games. e Viking Press, New York City, New York, USA, st
edition.

Adams, E. and Rollings, A. (). Fundamentals of Game Design. Game Design and De-
velopment. Prentice Hall, Upper Saddle River, New Jersey, USA.

Agarwal, K. (). Preloading game demos is a keymerchandizing lever to drive purchases.
NielsenMobile, NewYorkCity,NewYork, USA. [Online]. Available: http://www.telephia.
com/html/GDC_press_release_template.html.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. I. (). Fast discovery
of association rules. In Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy,
R., editors, Advances in Knowledge Discovery and Data Mining, pages –. AAAI
Press, Menlo Park, California, USA.

Aha, D.W.,Molineaux,M., and Ponsen,M. J. V. (). Learning towin: Case-based plan se-
lection in a real-time strategy game. InMuñoz-Avila, H. and Ricci, F., editors, Proceedings
of the th International Conference on Case-Based Reasoning (ICCBR ), pages –.
DePaul University, Chicago, Illinois, USA.

Alhadeff, E. (). Serious games: A sizeable market - Update. Future-Making
Serious Games. [Online]. Available: http://elianealhadeff.blogspot.com///
serious-games-sizeable-market-update.html.

Allen, J. D. (). A note on the computer solution of connect-four. In Levy, D. N. L. and
Beal, D. F., editors, Heuristic Programming in Artificial Intelligence: e First Computer
Olympiad, pages –. Ellis Horwood, Chichester, UK.

Allen, M. J., Suliman, H., Wen, Z., Gough, N. E., and Mehdi, Q. H. (). Directions for
future game development. In Mehdi, Q. H., Gough, N. E., and Al-Dabass, D., editors,
Proceedings of the nd International Conference of Intelligent Games and Simulation (GA-
MEON’), pages –. EUROSIS-ETI, Ghent University, Ghent, Belgium.

Allis, L. V. (). A knowledge-based approach of connect four: e game is over, white
to move wins. Master’s thesis, Faculty of Mathematics and Computer Science, Vrije Uni-
versiteit, Amsterdam, e Netherlands. Report no. IR-.

Allis, L. V. (). Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
Faculty of Humanities and Sciences, Maastricht University, Maastricht, e Netherlands.

152 References

Anantharaman,T. S. (). Extension heuristics. InternationalComputerChess Association
(ICCA) Journal, ():–.

Anantharaman, T. S. (). Evaluation tuning for computer chess: Linear discriminant
methods. International Computer Chess Association (ICCA) Journal, ():–.

Angiulli, F. and Folino, G. (). Distributed nearest neighbor-based condensation of very
large data sets. IEEE Transactions on Knowledge and Data Engineering, ():–.

Atkin, L. and Slate, D. (). Chess . - e northwestern university chess program. In
Levy, D. N. L., editor, Computer chess compendium, pages –. Springer-Verlag, Hei-
delberg, Germany.

Auslander, B., Lee-Urban, S., Hogg, C., andMuñoz-Avila, H. (). Recognizing the enemy:
Combining reinforcement learning with strategy selection using case-based reasoning.
In Althoff, K.-D., Bergmann, R., Minor, M., and Hanft, A., editors, Proceedings of the th
European Conference on Case-Based Reasoning (ECCBR ), pages –. University of
Trier, Trier, Germany.

Bakkes, S. C. J., Kerbusch, P., Spronck, P. H. M., and Van den Herik, H. J. (a). Auto-
matically evaluating the status of an RTS game. In Van Someren, M., Katrenko, S., and
Adriaans, P., editors, Proceedings of the Annual Belgian-Dutch Machine Learning Confe-
rence (Benelearn ), pages –. University of Amsterdam, Amsterdam, e Ne-
therlands.

Bakkes, S. C. J., Kerbusch, P., Spronck, P. H. M., and Van den Herik, H. J. (b). Predic-
ting success in an imperfect-information game. In Van den Herik, H. J., Uiterwijk, J. W.
H.M.,Winands,M. H.M., and Schadd,M. P. D., editors, Proceedings of the Computer Ga-
mes Workshop  (CGW ), MICC Technical Report Series -, pages –.
Maastricht University, Maastricht, e Netherlands.

Bakkes, S. C. J. and Spronck, P. H. M. (). Symbiotic learning in commercial computer
games. In Mehdi, Q. H., Gough, N. E., and Natkin, S., editors, Proceedings of the th In-
ternational Conference on Computer Games (CGAMES ), pages –. University
of Wolverhampton, Wolverhampton, UK.

Bakkes, S. C. J. and Spronck, P. H. M. (). Gathering and utilising domain knowledge
in commercial computer games. In Schobbens, P.-Y., Vanhoof, W., and Schwanen, G.,
editors, Proceedings of the th Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC ), pages –. University of Namur, Namur, Belgium.

Bakkes, S. C. J. and Spronck, P. H. M. (). Automatically generating a score function for
strategy games. In Rabin, S., editor, AI Game Programming Wisdom , pages –.
Charles River Media, Inc., Hingham, Massachusetts, USA.

Bakkes, S. C. J., Spronck, P. H. M., and Postma, E. O. (). TEAM: e Team-oriented
Evolutionary Adaptability Mechanism. In Rauterberg, M., editor, Entertainment Com-
puting - ICEC , volume  of Lecture Notes in Computer Science, pages –.
Springer-Verlag, Heidelberg, Germany.

References 153

Bakkes, S. C. J., Spronck, P. H. M., and Postma, E. O. (a). Best-response learning of
team behaviour in Quake III. In Aha, D. W., Muñoz-Avila, H., and Van Lent, M., edi-
tors, Proceedings of the IJCAI  Workshop on Reasoning, Representation, and Learning
in Computer Games, pages –. Navy Center for Applied Research in Artificial Intelli-
gence, Washington, DC., USA.

Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (b). Learning to play as
a team. In Wanders, A., editor, Proceedings of the Learning Solutions  symposium,
pages –. SNN Adaptive Intelligence, Nijmegen, e Netherlands.

Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (c). Phase-dependent
evaluation in RTS games. InDastani,M.M. and de Jong, E., editors,Proceedings of the th
Belgian-Dutch Conference on Artificial Intelligence (BNAIC ), pages –. Utrecht
University, Utrecht, e Netherlands.

Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (a). Rapid adaptation of
video game AI. In Botti, V., Barella, A., and Carrascosa, C., editors, Proceedings of the th
International Conference on Intelligent Games and Simulation (GAMEON’), pages
–. EUROSIS-ETI, Ghent University, Ghent, Belgium.

Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (b). Rapid adaptation of
video game AI (Extended version of a). In Hingston, P. and Barone, L., editors, Pro-
ceedings of the IEEE  Symposium on Computational Intelligence andGames (CIG’),
pages –. IEEE Press, Piscataway, New York, USA.

Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (c). Rapidly adapting game
AI. In Nijholt, A., Pantic, M., Poel, M., , and Hondorp, H., editors, Proceedings of the th
Belgian-Dutch Artificial Intelligence Conference (BNAIC ), pages –. University of
Twente, Enschede, e Netherlands.

Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (a). Opponent modelling
for case-based adaptive game AI. Entertainment Computing, ():–.

Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (b). Rapid and reliable
adaptation of video game AI. IEEE Transactions on Computational Intelligence and AI in
Games, ():–.

Baran, M. and Urbanczyk, M. (). AI:TSI. Creator of the game AI ‘TSI’, [Online]. Avai-
lable: http://spring.clan-sy.com/wiki/AI:TSI.

Baratz, A. (). e stage of the game. Ars Technica. [Online]. Available: http:
//arstechnica.com/reviews/q/gaminghistory/ghistory-.html.

Baumgarten, R., Colton, S., and Morris, M. (). Combining AI methods for learning
bots in a real-time strategy game. International Journal on Computer Game Technologies,
. Article ID . Special issue on Artificial Intelligence for Computer Games.

Baxter, J., Tridgell, A., and Weaver, L. (). Experiments in parameter learning using tem-
poral differences. International Computer Chess Association (ICCA) Journal, ():–.

154 References

Beal, D. F. (). Mixing heuristic and perfect evaluations: Nested minimax. International
Computer Chess Association (ICCA) Journal, ():–.

Beal, D. F., editor (). Advances in Computer Chess . Elsevier Science Publishers, Am-
sterdam, e Netherlands.

Beal, D. F. and Smith, M. C. (). Random evaluations in chess. International Computer
Chess Association (ICCA) Journal, ():–.

Beal, D. F. and Smith, M. C. (). Learning piece values using temportal differences. In-
ternational Computer Chess Association (ICCA) Journal, ():–.

Bentley, J. L. (). Multidimensional binary search trees used for associative searching.
Communications of the ACM, ():–.

Beygelzimer, A., Kakade, S., and Langford, J. (). Cover trees for nearest neighbor. In
Cohen, W. and Moore, A., editors, Proceedings of the rd international conference on
Machine Learning (ICML ’), pages –. ACM, New York City, New York, USA.

Billings, D. (). Algorithms and Assessment in Computer Poker. PhD thesis, Department
of Computing Science, University of Alberta, Edmonton, Alberta, Canada.

Blizzard (). Press release - World of Warcraft subscriber base reaches . million
worldwide. [Online]. Available: http://eu.blizzard.com/en/press/.html.

Böhm,N., Kóokai, G., andMandl, S. (). An evolutionary approach to Tetris. InDoerner,
K. F., Gendreau, M., Greistorfer, P., Gutjahr, W. J., Hartl, R. F., , and Reimann, M., editors,
Proceedings of the thMetaheuristics International Conference (MIC), pages –.
University of Vienna, Vienna, Austria.

Bouzy, B. and Cazenave, T. (). Computer Go: An AI-oriented survey. Artificial Intelli-
gence, ():–.

Boyd, J. R. (). A discourse on winning and losing. Unpublished set of briefing slides
available at Air University Library, Maxwell AFB AL, Report no: mu.

Bramer, M. A. (). Computer Game-Playing: eory and Practice. Ellis Horwood, Chi-
chester, UK.

Brand, S. (). II Cybernetic Frontiers. Random House, New York City, New York, USA.

Breslow, L. A. and Aha, D. W. (). Simplifying decision trees: A survey. Knowledge
Engineering Review, ():–.

Brockington, M. and Darrah, M. (). How not to implement a basic scripting language.
In Rabin, S., editor,AI Game ProgrammingWisdom, pages –. Charles RiverMedia,
Inc., Hingham, Massachusetts, USA.

Buro,M. (). Improving heuristic mini-max search by supervised learning. Artificial In-
telligence. Special Issue on Games, Computers and Artificial Intelligence., (–):–.

References 155

Buro, M. (). e evolution of strong Othello programs. In Nakatsu, R. and Hoshino,
J., editors, Entertainment Computing, volume  of IFIP Advances in Information and
Communication Technology, pages –. Springer-Verlag, Heidelberg, Germany.

Buro, M. (). Call for AI research in RTS games. In Fu, D., Henke, S., and Orkin, J., edi-
tors, Proceedings of the AAAI- Workshop on Challenges in Game Artificial Intelligence,
pages –. AAAI Press, Menlo Park, California, USA.

Buro, M. and Furtak, T. (). RTS games as test-bed for real-time AI research. In Chen,
K., Chen, S.-H., Cheng, H.-D., Chiu, D. K. Y., Das, S., Duro, R., Jiang, Z., Kasabov, N.,
Kerre, E., Leong, H. V., Li, Q., Lu, M., Romay, M. G., Ventura, D., Wang, P. P., and Wu, J.,
editors, Proceedings of the th Joint Conference on Information Sciences (JCIS ), pages
–. Duke University, Durham, North Carolina, USA.

Buro, M. and Furtak, T. M. (). RTS games and real-time AI research. In Proceedings
of the Behavior Representation in Modeling and Simulation Conference (BRIMS), pages
–. Simulation Interoperability Standards Organization (SISO), Arlington, Virginia,
USA.

Carmel, D. and Markovitch, S. (). Learning models of opponent’s strategy in game
playing. In Proceedings of AAAI Fall Symposium on Games: Planning and Learning, pages
–, Raleigh, NC.

Carmel, D. and Markovitch, S. (). Exploration and adaptation in multiagent systems:
A model-based approach. In Pollack, M. E., editor, Proceedings of the th International
Joint Conference for Artificial Intelligence (IJCAI ), pages –. Morgan Kaufmann
Publishers, San Francisco, California, USA.

Carmel, D. andMarkovitch, S. (). Pruning algorithms formulti-model adversary search.
Artificial Intelligence, ():–.

Carr, D. (). Applying reinforcement learning to Tetris. Department of Computer Sci-
ence, Rhodes University, Grahamstown, South Africa. Technical Report.

Castronova, E. (). Virtual worlds: A first-hand account of market and society on the
cyberian frontier. In Sinn, H.-W. and Stimmelmayr, M., editors, CESifo Working Paper
Series No. . Indiana University Bloomington, Bloomington, Indiana, USA. [Online].
Available: http://ssrn.com/abstract=.

Castronova, E. (). On the research value of large games: Natural experiments in nor-
rath and camelot. In Sinn, H.-W. and Stimmelmayr, M., editors, CESifo Working Paper
Series No. . Indiana University Bloomington, Bloomington, Indiana, USA. [Online].
Available: http://ssrn.com/abstract=.

Chan, B., Denzinger, J., Gates, D., Loose, K., and Buchanan, J. (). Evolutionary behavior
testing of commercial computer games. In Greenwood, G. W., editor, Proceedings of the
 IEEECongress on Evolutionary Computation, pages –. IEEE Press, Piscataway,
New York, USA.

156 References

Charles, D. and Livingstone, D. (). AI: e missing link in game interface design. In
Rauterberg, M., editor, Entertainment Computing - ICEC , volume  of Lecture
Notes in Computer Science, pages –. Springer-Verlag, Heidelberg, Germany.

Charles, D. and McGlinchey, S. (). e past, present and future of artificial neural
networks in digital games. In Mehdi, Q. H., Gough, N. E., Natkin, S., and Al-Dabass, D.,
editors, Computer Games: Artificial Intelligence, Design and Education, pages –.
University of Wolverhampton, Wolverhampton, UK.

Chaslot, G. M. JB., Bakkes, S. C. J., Szita, I., and Spronck, P. H. M. (a). Monte-carlo tree
search: A new framework for gameAI. InMateas,M. andDarken, C., editors, Proceedings
of the th Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE
), pages –. AAAI Press, Menlo Park, California, USA.

Chaslot, G. M. JB., Bakkes, S. C. J., Szita, I., and Spronck, P. H. M. (b). Monte-carlo
tree search: A new framework for game AI. In Nijholt, A., Pantic, M., Poel, M., and Hon-
dorp, H., editors, Proceedings of the th Belgian-Dutch Artificial Intelligence Conference
(BNAIC ), pages –. University of Twente, Enschede, e Netherlands.

Chaslot, G. M. JB., Winands, M. H. M., Szita, I., and Van den Herik, H. J. (c). Cross-
entropy for monte-carlo tree search. International Computer Games Association (ICGA)
Journal, ():–.

Chaslot, G. M. JB., Winands, M. H. M., Uiterwijk, J. W. H. M., Van den Herik, H. J., and
Bouzy, B. (d). Progressive strategies forMonte-Carlo Tree Search. NewMathematics
and Natural Computation, ():–.

Chellapilla, K. and Fogel, D. B. (). Evolving an expert checkers playing programwithout
using human expertise. IEEE Transactions on Evolutionary Computation, ():–.

Church, D. and Pfeifer, B. (). High fidelity, believable human characters. Invited lec-
ture at the th Conference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE ).

Cohen, P. R. (). Emperical Methods for Artificial Intelligence. MIT Press, Cambridge,
Massachusetts, USA.

Consalvo, M. and Dutton, N. (). Game analysis: Developing a methodological toolkit
for the qualitative study of games. e International Journal of Computer Game Research,
(). [Online] Available: http://gamestudies.org//articles/consalvo_dutton.

Craw, S., Massie, S., and Wiratunga, N. (). Informed case base maintenance: a com-
plexity profiling approach. In AAAI’: Proceedings of the nd national conference on
Artificial intelligence, pages –. AAAI Press, Menlo Park, California, USA.

Crawford, C. (). eArt of Computer Game Design. Mcgraw-Hill Osborne Media, New
York City, New York, USA.

References 157

Cummins, L. and Bridge, D. (). Maintenance by a committee of experts:eMACE ap-
proach to case-basemaintenance. InMcginty, L. andWilson, D. C., editors, Proceedings of
the th International Conference on Case-Based Reasoning (ICCBR ), pages –.
Springer-Verlag, Heidelberg, Germany.

Darken, C. J. and Anderegg, B. G. (). Particle filters and simulacra for more realistic
opponent tracking. In Rabin, S., editor,AI Game ProgrammingWisdom , pages –.
Charles River Media, Inc., Hingham, Massachusetts, USA.

Demaine, E. D., Hohenberger, S., and Liben-Nowell, D. (). Tetris is hard, even to
approximate. Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Technical Report MIT-LCS-TR-.

Demasi, P. and Cruz, A. J. de. O. (). Online coevolution for action games. International
Journal of Intelligent Games and Simulation, ():–.

Denzinger, J. and Hamdan, J. (). Improving modeling of other agents using tentative
stereotypes and compactification of observations. In Liu, J. and Cercone, N., editors,
Proceedings of the  IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT ), pages –. IEEE Press, Piscataway, New York, USA.

Donkers, H. H. L. M. (). Nosce Hostem - Searching with Opponent Models. PhD thesis,
Faculty of Humanities and Sciences, Maastricht University, Maastricht, e Netherlands.

Donkers, H. H. L. M. and Spronck, P. H. M. (). Preference-based player modeling. In
Rabin, S., editor, AI Game Programming Wisdom , pages –. Charles River Media,
Inc., Hingham, Massachusetts, USA.

Donkers, H. H. L. M., Uiterwijk, J. W. H. M., and Van den Herik, H. J. (). Probabilistic
opponent-model search. Information Sciences, (–):–.

Donkers, H. H. L. M., Uiterwijk, J. W. H. M., and Van den Herik, H. J. (). Admissibility
in opponent-model search. Information Sciences, (–):–.

Douglas, A. S. (). Some Computations in eoretical Physics. PhD thesis, Faculty of
Mathematics, University of Cambridge, Cambridge, UK.

Droste, S. and Fürnkranz, J. (). Learning the piece values for three chess variants. In-
ternational Computer Games Association (ICGA) Journal, ():–.

Egnor, D. (). Iocaine power. International Computer Games Association (ICGA) Jour-
nal, ():–.

Euwe, M., Blaine, M., and Rumble, J. F. S. (). e Logical Approach to Chess. Dover
Publications, Mineola, New York, USA.

Evans, R. (). Varieties of Learning. In Rabin, S., editor,AI Game ProgrammingWisdom,
pages –. Charles River Media, Inc., Hingham, Massachusetts, USA.

158 References

Evans, R. (). Exotic AI techniques for Sims . Invited lecture at the th Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE ).

Fagan, M. and Cunningham, P. (). Case-based plan recognition in computer games. In
Ashley, K. D. and Bridge, D., editors, Proceedings of the th International Conference on
Case-Based Reasoning (ICCBR ), pages –. Springer-Verlag, Heidelberg, Ger-
many.

Fahey, C. (). Computer plays Tetris. [Online]. Available: http://colinfahey.com/tetris/
tetris_en.html.

Fairclough, C., Fagan, M., MacNamee, B., and Cunningham, P. (). Research directions
for AI in computer games. In O’Donoghue, D., editor, Proceedings of the th Irish Confe-
rence on Artificial Intelligence & Cognitive Science (AICS ), pages –. National
University of Maynooth, Maynooth, Ireland.

Faltings, B. (). Probabilistic indexing for case-based prediction. In Leake, D. B. and
Plaza, E., editors, Proceedings of the nd International Conference on Case-Based Reaso-
ning (ICCBR ), pages –. Springer-Verlag, Heidelberg, Germany.

Fenley, R. (). Baby steps to our future. HAL-PC Magazine. [Online]. Available: http:
//www.hal-pc.org/journal/novdec/column/babystep/babystep.html.

Ferguson, D. (). Blockdot to participate in serious games panel at SXSW festival. Press
release Blockdot.com, January , . [Online]. Available: http://www.blockdot.com/
news/pressDetail.aspx?NewsId=.

Fix, E. and Hodges, J.L., Jr. (). Discriminatory analysis: Nonparametric discrimination:
Consistency properties. Technical Report Project --, Report Number , USAF
School of Aviation Medicine, Randolf Field, Texas, USA.

Flom, L. and Robinson, C. (). Using a genetic algorithm to weight an evaluation func-
tion for Tetris. Colorado State University, Fort Collins, Colorado, USA. Technical Report.

Frey, P. W. (). Chess Skill in Man and Machine. Springer-Verlag, Heidelberg, Germany.

Fu, D. and Houlette, R. (). Constructing a Decision Tree Based on Past Experience. In
Rabin, S., editor, AI Game Programming Wisdom , pages –. Charles River Media,
Inc., Hingham, Massachusetts, USA.

Funge, J. D. (). Artificial Intelligence for Computer Games. A K Peters, Ltd., Wellesley,
Massachusetts, USA.

Furini, M. (). Mobile games: What to expect in the near future. In Roccetti, M., edi-
tor, Proceedings of the th International Conference on Intelligent Games and Simulation
(GAMEON’), pages –. EUROSIS-ETI, Ghent University, Ghent, Belgium.

Fürnkranz, J. (). Recent advances inmachine learning and gameplaying.ÖGAI-Journal,
():–.

References 159

Fürnkranz, J. and Hüllermeier, E. (). Preference learning. Künstliche Intelligenz,
():–.

Fyfe, C. (). Independent component analysis against camouflage. In Mehdi, Q. H.,
Gough, N. E., Natkin, S., and Al-Dabass, D., editors, Computer Games: Artificial Intel-
ligence, Design and Education, pages –. University of Wolverhampton, Wolver-
hampton, UK.

Gibbons, R. (). A Primer in Game eory. Pearson Education Ltd., Harlow, Essex, UK.

Goldsmith, Jr., T. T., Grove, C., andMann, E. R. (). Cathode-ray tube amusement device.
USA Patent ,,.

Gomboc, D., Buro, M., and Marsland, T. A. (). Tuning evaluation functions by maxi-
mizing concordance. eoretical Computer Science, ():–.

Graepel, T., Herbrich, R., and Gold, J. (). Learning to fight. In Mehdi, Q. H., Gough,
N. E., and Al-Dabass, D., editors, Proceedings of Computer Games: Artificial Intelligence,
Design and Education (CGAIDE ), pages –. University of Wolverhampton,
Wolverhampton, UK.

Grundstrom, E. (). e AI of Spore. Invited lecture at the th Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE ).

Guyon, I. and Elisseeff, A., editors (). JMLR Special Issue on Variable and Feature
Selection, volume (Mar). Journal of Machine Learning Research. [Online] Available:
http://jmlr.csail.mit.edu/papers/special/feature.html.

Halck, O. M. and Dahl, F. A. (). On classifications of games and evaluation of players -
with some sweeping generalizations about the literature. In Fürnkranz, J. and Kubat, M.,
editors, Proceedings of the ICML- Workshop on Machine Learning in Game Playing. J.
Stefan Institute, Bled, Slovenia.

Harding-Rolls, P. (). Subscription MMOGs: Life beyond World of Warcraft. In Screen
Digest. London, UK. [Online]. Available: http://www.screendigest.com/press/releases/
pdf/PR-LifeBeyondWorldOfWarcraft-.pdf.

Hartigan, J. A. and Wong, M. A. (). A k-means clustering algorithm. Applied Statistics,
():–.

Hartmann, D. (a). How to extract relevant knowledge from grandmaster games. Part :
Grandmasters have insights - the problem is what to incorporate into practical problems.
International Computer Chess Association (ICCA) Journal, ():–.

Hartmann, D. (b). How to extract relevant knowledge from grandmaster games. Part
: e notion of mobility, and the work of De Groot and Slater. International Computer
Chess Association (ICCA) Journal, ():–.

160 References

Hartmann, D. (). Notions of evaluation functions tested against grandmaster games. In
Beal, D. F., editor, Advances in Computer Chess , pages –. Elsevier Science Publis-
hers, Amsterdam, e Netherlands.

Houlette, R. (). Playermodeling for adaptive games. InAIGame ProgrammingWisdom
, pages –. Charles River Media, Inc., Hingham, Massachusetts, USA.

Hsu, F.-H. (). Behind Deep Blue: Building the Computer that Defeated the World Chess
Champion. Princeton University Press.

Hunicke, R. and Chapman, V. (). AI for dynamic difficulty adjustment in games. In
AAAI Workshop on Challenges in Game Artificial Intelligence, pages –. AAAI Press,
Menlo Park, California, USA.

Iida, H., Uiterwijk, J. W. H. M., Van den Herik, H. J., and Herschberg, I. S. (). Potential
applications of opponent-model search. Part : the domain of applicability. International
Computer Chess Association (ICCA) Journal, ():–.

Isla, D. (). Halo  objective trees: A declarative approach to multiagent coordination.
Invited lecture at the th Conference on Artificial Intelligence and Interactive Digital En-
tertainment (AIIDE ).

Jansen, P. J. (). Using knowledge about the opponent in game-tree search. PhD thesis,
School of Computer Science, CarnegieMellonUniversity, Pittsburgh, Pennsylvania, USA.

Jansen, P. J. (). KQKR: Speculative thwarting a human opponent. International Com-
puter Chess Association (ICCA) Journal, ():–.

Johnson, S. (). Adaptive AI: A practical example. In Rabin, S., editor, AI Game Pro-
grammingWisdom, pages –. Charles RiverMedia, Inc., Hingham,Massachusetts,
USA.

Juul, J. (). Games telling stories? A brief note on games and narratives, in game studies.
e International Journal of Computer Game Research, (). [Online] Available: http://
gamestudies.org//juul-gts/.

Kaneko, T., Yamaguchi, K., and Kawai, S. (). Automated identification of patterns in
evaluation functions. In Van den Herik, H. J., Iida, H., and Heinz, E. A., editors, Advances
in Computer Games: Many Games, Many Challenges, pages –. Springer-Verlag,
Heidelberg, Germany.

Kendall, G. (). Iterated prisoner’s dilemma competition. [Online]. Available: http://
www.prisoners-dilemma.com/.

Koller, D. and Pfeffer, A. (). Representations and solutions for game-theoretic problems.
Artificial Intelligence, ():–.

Kolodner, J. (). Case-based reasoning. Morgan Kaufmann Publishers, San Francisco,
California, USA.

References 161

Laird, J. E. (). Bridging the gap between developers & researchers. Game Developers
Magazine, ():.

Laird, J. E. and Van Lent, M. (). Human-level AI’s killer application: Interactive com-
puter games. AI Magazine, ():–.

Laramée, F. D. (). Using n-gram statistical models to predict player behavior. In Ra-
bin, S., editor,AI Game ProgrammingWisdom, pages –. Charles River Media, Inc.,
Hingham, Massachusetts, USA.

Laursen, R. and Nielsen, D. (). Investigating small scale combat situations in real-time-
strategy computer games. Master’s thesis, Department of Computer Science, University
of Aarhus, Aarhus, Denmark.

Laviers, K., Sukthankar, G., Klenk, M., Aha, D. W., and Molineaux, M. (a). Opponent
modeling and spatial similarity to retrieve and reuse superior plays. In Lamontagne, L.
and Calero, P. G., editors, Proceedings of theWorkshop on Case-Based Reasoning for Com-
puter Games, th International Conference onCase-Based Reasoning (ICCBR ), pages
–. AAAI Press, Menlo Park, California, USA.

Laviers, K., Sukthankar, G., Molineaux, M., and Aha, D. W. (b). Improving offensive
performance through opponent modeling. In Proceedings of the th Artificial Intelligence
and Interactive Digital Entertainment Conference (AIIDE ).

Leake, D. B. (). Case-based reasoning: Experiences, lessons and future directions. MIT
Press, Cambridge, Massachusetts, USA.

Leake, D. B., Kinley, A., and Wilson, D. (). Learning to improve case adaptation by in-
trospective reasoning and CBR. In Veloso, M. M. and Aamodt, A., editors, Proceedings of
the st International Conference on Case-Based Reasoning (ICCBR ), pages –.
Springer-Verlag, Heidelberg, Germany.

Leake, D. B. and Wilson, D. (). When experience is wrong: examining CBR for chan-
ging tasks and environments. In Althoff, K.-D., Bergmann, R., and Branting, K., editors,
Proceedings of the rd International Conference on Case-Based Reasoning (ICCBR ),
pages –. Springer-Verlag, Heidelberg, Germany.

Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rimmel, A., Teytaud, O., Tsai, S.-R., Hsu,
S.-C., and Hong, T.-P. (). e Computational Intelligence of MoGo Revealed in Tai-
wan’s Computer Go Tournaments. IEEE Transactions on Computational Intelligence and
AI in Games, ():–.

Levy, D. N. L. and Newborn, M. (). How Computers Play Chess. Computer Science
Press, Inc., New York City, New York, USA.

Lewis, M. (). AI postmortem: Spore - Inside the GDC . [Online]. Available: http:
//www.gamedev.net/columns/events/gdc/article.asp?id=.

162 References

Lidén, L. (). Artificial stupidity: e art of making intentional mistakes. In Rabin, S.,
editor, AI Game Programming Wisdom , pages –. Charles River Media, Inc., Hing-
ham, Massachusetts, USA.

Livingstone, D. and Charles, D. (). Intelligent interfaces for digital games. In Fu, D.,
Henke, S., , and Orkin, J., editors, Proceedings of the AAAI- Workshop on Challenges in
Game Artifcial Intelligence, pages –. AAAI Press, Menlo Park, California, USA.

Livingstone, D. and McGlinchey, S. J. (). What believability testing can tell us. In
Mehdi, Q. H., Gough, N. E., and Al-Dabass, D., editors, Proceedings of Computer Games:
Artificial Intelligence, Design and Education (CGAIDE ), pages –. University
of Wolverhampton, Wolverhampton, UK.

Lopez de Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings,
B., Maher, M. L., Cox, M. T., Forbus, K., Keane, M., Aamodt, A., and Watson, I. ().
Retrieval, reuse, revision and retention in case-based reasoning. Knowledge Engineering
Review, ():–.

Louis, S. J. and Miles, C. (). Playing to learn: Case-injected genetic algorithms for
learning to play computer games. IEEE Transactions on Evolutionary Computation,
():–.

Manovich, L. (). e Language of New Media. MIT Press, Cambridge, Massachusetts,
USA.

Manslow, J. (). Learning and adaptation. In Rabin, S., editor, AI Game Programming
Wisdom, pages –. Charles River Media, Inc., Hingham, Massachusetts, USA.

Mehlkop, B. (). Adaptive game AI using opponent modelling. Master’s thesis, Faculty
of Humanities and Sciences, Maastricht University, Maastricht, e Netherlands.

Mehta, M., Ontañón, S., and Ram, A. (). Authoring behaviors for games using learning
from demonstration. In Lamontagne, L. and Calero, P. G., editors, Proceedings of the
Workshop on Case-Based Reasoning for Computer Games, th International Conference
on Case-Based Reasoning (ICCBR ), pages –. AAAI Press, Menlo Park, Cali-
fornia, USA.

Millington, I. (). Artificial Intelligence for Games. Morgan Kaufmann Publishers, San
Francisco, California, USA.

Mitchell, T. M. (). Machine Learning. McGraw-Gill Series in Computer Science.

Miwa,M., Yokoyama, D., and Chikayama, T. (). Automatic construction of static evalu-
ation functions for computer game players. In Lecture Notes in Computer Science, volume
, pages –. Springer-Verlag, Heidelberg, Germany.

Molyneux, P. D. (). e future of game AI - Lecture. Imperial College London, London,
UK. October , .

References 163

Muñoz-Avila, H. and Hüllen, J. (). Feature weighting by explaining case-based plan-
ning episodes. In Smith, I. F. C. and Faltings, B., editors, Proceedings of rd European
Workshop on Case-Based Reasoning (EWCBR-), pages –. Springer-Verlag, Hei-
delberg, Germany.

Murray, J. H. (). Hamlet on the Holodeck: e Future of Narrative in Cyberspace. MIT
Press, Cambridge, Massachusetts, USA.

Nareyek, A. (). Intelligent agents for computer games. In Marsland, T. A. and Frank,
I., editors, Computers and Games, Second International Conference, CG , volume
 of Lecture Notes in Computer Science, pages –. Springer-Verlag, Heidelberg,
Germany.

Nareyek, A. (). Artificial intelligence in computer games: State of the art and future
directions. ACM Queue, ():–.

Nechvatal, J. (). Immersive Ideals / Critical Distances. A study of the Affinity Between
Artistic Ideologies Based in Virtual Reality and Previous Immersive Idioms. PhD thesis,
Centre for Advanced Inquiry in the Interactive Arts (CAiiA), University ofWales College,
Newport, UK.

Nguyen, T.H., Ekholm, J., and Ingelbrecht, N. (). Dataquest insight:More growth ahead
for mobile gaming. Press Release Gartner, Inc., Stamford, Connecticut, USA. [Online].
Available: http://www.gartner.com/DisplayDocument?ref=g_search&id=.

Nolfi, S. and Floreano, D. (). Evolutionary Robotics. MIT Press, Cambridge, Massachu-
setts, USA.

Nowell, T. (). AI:NTAI. Creator of the game AI ‘NTAI’, [Online]. Available: http://
spring.clan-sy.com/wiki/AI:NTAI.

Olesen, J. K., Yannakakis, G. N., and Hallam, J. (). Real-time challenge balance in an
RTS game using rtNEAT. In Hingston, P. and Barone, L., editors, Proceedings of the IEEE
 Symposium on Computational Intelligence and Games (CIG’), pages –. IEEE
Press, Piscataway, New York, USA.

Ontañón, S., Mishra, K., Sugandh, N., and Ram, A. (). Case-based planning and exe-
cution for real-time strategy games. In Weber, R. O. and Richter, M. M., editors, Pro-
ceedings of the th International Conference on Case-Based Reasoning (ICCBR ), pa-
ges –. Springer-Verlag, Heidelberg, Germany.

Ontañón, S., Mishra, K., Sugandh, N., and Ram, A. (). On-line case-based planning.
Computational Intelligence Journal. (To appear).

Pearl, J. (). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Co., Reading, Massachusetts, USA.

Pearson, K. (). On lines and planes of closest fit to systems of points in space. Philoso-
phical Magazine, ():–.

164 References

Perkins, H. (). AI:CSAI. Creator of the game AI ‘CSAI’, [Online]. Available: http://
spring.clan-sy.com/wiki/AI:CSAI.

Pollack, J. B. and Blair, A. D. (). Co-evolution in the successful learning of backgammon
strategy. Machine Learning, ():–.

Ponsen, M. J. V. and Spronck, P. H. M. (). Improving adaptive game AI with evoluti-
onary learning. In Mehdi, Q. H., Gough, N. E., and Al-Dabass, D., editors, Proceedings
of Computer Games: Artificial Intelligence, Design and Education (CGAIDE ), pages
–. University of Wolverhampton, Wolverhampton, UK.

Ponsen, M. J. V., Spronck, P. H. M., Muñoz-Avila, H., and Aha, D. W. (). Knowledge
acquisition for adaptive game AI. Science of Computer Programming, ():–.

Quinlan, J. R. (). Induction of decision trees. Machine Learning, ():–.

Rabin, S. (a). Filtered randomness for AI decisions and game logic. In Rabin, S., edi-
tor, AI Game Programming Wisdom , pages –. Charles River Media, Inc., Hingham,
Massachusetts, USA.

Rabin, S. (b). Promising game AI techniques. In Rabin, S., editor, AI Game Program-
ming Wisdom , pages –. Charles River Media, Inc., Hingham, Massachusetts, USA.

Rabin, S. (). Preface. In Rabin, S., editor,AIGame ProgrammingWisdom , pages ix–xi.
Charles River Media, Inc., Hingham, Massachusetts, USA.

Raven, P. H. and Johnson, G. B. (). Biology. McGraw-Hill Science/Engineering/Math,
New York City, New York, USA.

Reibman, A. L. and Ballard, B. W. (). Nonminimax search strategies for use against
fallible opponents. InTenenbaum, J.M., editor,Proceedings of the rdNationalConference
on Artificial Intelligence (AAAI-), pages –. Morgan Kaufmann Publishers, San
Francisco, California, USA.

Reth (). AI:RAI. Creator of the gameAI ‘RAI’, [Online]. Available: http://spring.clan-sy.
com/wiki/AI:RAI.

Richtel, M. (). Bid for game maker seen as effort to buy innovation. In e New York
Times. Arthur Ochs Sulzberger, Jr., New York City, New York, USA. February .

Rogers, R. (). e business of software - Cost of developing a software game. [Online].
Available: http://discuss.joelonsoftware.com/default.asp?biz....

Rohs, M. (). Preference-based player modelling for Civilization IV. Bachelor’s thesis,
Faculty of Humanities and Sciences, Maastricht University, Maastricht, e Netherlands.

Ross, B. H. (). Some psychological results on case-based reasoning. In Hammond,
K. J., editor, Proceedings of the DARPA Case-Based Reasoning Workshop, pages –.
Morgan Kaufmann Publishers, San Francisco, California, USA.

References 165

Sailer, F., Lanctot, M., and Buro, M. (). Simulation-based planning in RTS games. In
Rabin, S., editor, AI Game Programming Wisdom , pages –. Charles River Media,
Inc., Hingham, Massachusetts, USA.

Samuel, A. (). Some studies in machine learning using the game of Checkers. IBM
Journal, ():–.

Sánchez-Pelegrín, R., Gómez-Martín, M. A., and Díaz-Agudo, B. (). A CBR module for
a strategy videogame. In Aha, D. W. and Wilson, D., editors, Proceedings of the st Work-
shop on Computer Gaming and Simulation Environments, th International Conference
on Case-Based Reasoning (ICCBR ), pages –. DePaul University, Chicago, Illi-
nois, USA.

Sawyer, B. (). Serious games: Improving public policy through game-based learning
and simulation. Technical report, Foresight & Governance Project, Woodrow Wilson
International Center for Scholars, Washington, DC., USA. [Online]. Available: http://
www.wilsoncenter.org/topics/docs/ACFF.pdf.

Schadd, F. C. (). Hierarchical opponent models for real-time strategy games. Bache-
lor’s thesis, Faculty of Humanities and Sciences, Maastricht University, Maastricht, e
Netherlands.

Schadd, F. C., Bakkes, S. C. J., and Spronck, P. H.M. (). Opponentmodeling in real-time
strategy games. In Roccetti, M., editor, Proceedings of the th International Conference on
Intelligent Games and Simulation (GAMEON’), pages –. EUROSIS-ETI, Ghent
University, Ghent, Belgium.

Schaeffer, J. (). e relative importance of knowledge. International Computer Chess
Association (ICCA) Journal, ():–.

Schaeffer, J. (). A gamut of games. AI Magazine, ():–.

Schaeffer, J., Burch,N., Björnsson, Y., Kishimoto, A.,Müller,M., Lake, R., Lu, P., and Sutphen,
S. (). Checkers is solved. Science, ():–.

Schaeffer, J., Lake, R., Lu, P., and Bryant,M. (). Chinook:eman-machine world Chec-
kers champion. AI Magazine, ():–.

Scott, B. (). e illusion of intelligence. In Rabin, S., editor, AI Game Programming
Wisdom, pages –. Charles River Media, Inc., Hingham, Massachusetts, USA.

Seizinger, A. (). AI:AAI. Creator of the gameAI ‘AAI’, [Online]. Available: http://spring.
clan-sy.com/wiki/AI:AAI.

Sellers, M. (). Otello: A next-generation reputation system for humans and NPCs. In
Mateas, M. and Darken, C., editors, Proceedings of the th Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE ), pages –. AAAI Press,
Menlo Park, California, USA.

166 References

Shannon, C. E. (). Programming a computer for playing chess. Philosophical Magazine,
th series, ():–.

Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C., and Ram, A. (). Transfer
learning in real-time strategy games using hybrid CBR/RL. In Veloso, M. M., editor, Pro-
ceedings of the th International Joint Conference on Artificial Intelligence (IJCAI ),
pages –. AAAI Press, Menlo Park, California, USA.

Slagle, J. R. and Dixon, J. K. (). Experiments with the M & N tree-searching program.
Communications of the ACM, ():–.

Slater, S. I. (). Enhancing the immersive experience. In Mehdi, Q. H., Gough, N. E.,
and Cavazza, M., editors, Proceedings of the rd International Conference on Intelligent
Games and Simulation (GAMEON’), pages –. EUROSIS-ETI, Ghent University,
Ghent, Belgium.

Smyth, B. and Keane, M. T. (). Remembering to forget: A competence-preserving case
deletion policy for case-based reasoning systems. In Proceedings of the th International
Joint Conference on Artificial Intelligence (IJCAI ), pages –. Morgan Kaufmann
Publishers, San Francisco, California, USA.

Snider, M. (). Where movies end, games begin. In USA Today. Gannett Company,
McLean, Virginia, USA. May .

Snyman, J. A. (). Practical Mathematical Optimization: An Introduction to Basic Op-
timization eory and Classical and New Gradient-Based Algorithms. Springer-Verlag,
Heidelberg, Germany.

Spracklen, D. and Spracklen, K. (). Sargon: A Computer Chess Program. Hayden Book
Company.

Spronck, P. H. M. (a). Adaptive Game AI. PhD thesis, Faculty of Humanities and
Sciences, Maastricht University, Maastricht, e Netherlands.

Spronck, P. H. M. (b). A model for reliable adaptive game intelligence. In Aha, D. W.,
Muñoz-Avila, H., and Van Lent, M., editors, Proceedings of the IJCAI  Workshop on
Reasoning, Representation, and Learning in Computer Games, pages –. Navy Center
for Applied Research in Artificial Intelligence, Washington, DC., USA.

Spronck, P. H. M., Ponsen, M. J. V., Sprinkhuizen-Kuyper, I. G., and Postma, E. O. ().
Adaptive game AI with dynamic scripting. Machine Learning, ():–.

Spronck, P. H. M., Sprinkhuizen-Kuyper, I. G., and Postma, E. O. (a). Difficulty scaling
of game AI. In Rhalibi, A. E. and Van Welden, D., editors, Proceedings of the th Inter-
national Conference on Intelligent Games and Simulation (GAMEON’), pages –.
EUROSIS-ETI, Ghent University, Ghent, Belgium.

References 167

Spronck, P. H.M., Sprinkhuizen-Kuyper, I. G., and Postma, E. O. (b). Online adaptation
of game opponent AI with dynamic scripting. International Journal of Intelligent Games
and Simulation, ():–.

Stone, R. J. (). Serious gaming. Defence Management Journal, . [Online] Available:
http://www.defencemanagement.com/article.asp?id=&content_name=Education_
and_Training&article=.

Sugandh, N., Ontañón, S., and Ram, A. (). On-line case-based plan adaptation for
real-time strategy games. In Fox, D. and Gomes, C. P., editors, AAAI’: Proceedings of
the rd national conference on Artificial intelligence, pages –. AAAI Press, Menlo
Park, California, USA.

Sutton, R. S. (). Learning to predict by the methods of temporal differences. Machine
Learning, ():–.

Sutton, R. S. and Barto, A. G. (). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, Massachusetts, USA.

Szczepanski, T. and Aamodt, A. (). Case-based reasoning for improved micromana-
gement in real-time strategy games. In Lamontagne, L. and Calero, P. G., editors, Pro-
ceedings of theWorkshop onCase-BasedReasoning forComputerGames, th International
Conference on Case-Based Reasoning (ICCBR ), pages –. AAAI Press, Menlo
Park, California, USA.

Szita, I. and Lörincz, A. (). Learning Tetris using the noisy cross-entropy method.
Neural Computation, ():–.

Taylor, L. N. (). Video games: Perspective, point-of-view, and immersion. Master’s
thesis, Graduate Art School, University of Florida, Gainesville, Florida, USA.

Tesauro, G. (). Practical issues in temporal difference learning. Machine Learning,
(–):—.

iery, C. and Scherrer, B. (a). Building controllers for Tetris. International Computer
Games Association (ICGA) Journal, ():–.

iery, C. and Scherrer, B. (b). Tetris: Comparing the performances. International
Computer Games Association (ICGA) Journal, ():–.

ue, D. J., Bulitko, V., and Spetch,M. (). Player modeling for interactive storytelling: A
practical approach. In Rabin, S., editor,AIGame ProgrammingWisdom , pages –.
Charles River Media, Inc., Hingham, Massachusetts, USA.

unputtarakul, W. and Kotrajaras, V. (). Data analysis for ghost AI creation in com-
mercial fighting games. In Roccetti, M., editor, Proceedings of the th International Confe-
rence on Intelligent Games and Simulation (GAMEON’), pages –. EUROSIS-ETI,
Ghent University, Ghent, Belgium.

168 References

Tomlinson, S. (). Working at inking About Playing or A year in the life of a Games
AI Programmer. In Mehdi, Q. H., Gough, N. E., and Natkin, S., editors, Proceedings of
the th International Conference on Intelligent Games and Simulation (GAMEON’),
pages –. EUROSIS-ETI, Ghent University, Ghent, Belgium.

Tozour, P. (a). e evolution of game AI. In Rabin, S., editor, AI Game Programming
Wisdom, pages –. Charles River Media, Inc., Hingham, Massachusetts, USA.

Tozour, P. (b). e perils of AI scripting. In Rabin, S., editor, AI Game Programming
Wisdom, pages –. Charles River Media, Inc., Hingham, Massachusetts, USA.

Turing, A. M. (). Digital computers applied to games. In Bowden, B. V., editor, Faster
than thought, pages –. Pitman Publishing, London , UK.

Uiterwijk, J. W. H. M. and Van den Herik, H. J. (). Speculative play in computer chess.
In Van den Herik, H. J., Herschberg, I. S., and Uiterwijk, J. W. H. M., editors, Advances in
Computer Chess , pages –. Maastricht University, Maastricht, e Netherlands.

Utgoff, P. E. (). Feature construction for game playing. In Fürnkranz, J. and Kubat,
M., editors, Machines that Learn to Play Games, volume  of Advances in Computation:
eory and Practice, pages –. Nova Scientific Publishers, Hauppauge, New York,
USA.

Valkenberg, A. J. J. (). Opponent modelling in World of Warcraft. Bachelor’s thesis,
Faculty of Humanities and Sciences, Maastricht University, Maastricht, e Netherlands.

Van den Herik, H. J., Donkers, H. H. L. M., and Spronck, P. H. M. (). Opponent model-
ling and commercial games. In Kendall, G. and Lucas, S., editors, Proceedings of the IEEE
 Symposium on Computational Intelligence and Games (CIG’), pages –. IEEE
Press, Piscataway, New York, USA.

Van der Blom, L. L., Bakkes, S. C. J., and Spronck, P. H. M. (). Map-adaptive artifi-
cial intelligence for video games. In Roccetti, M., editor, Proceedings of the th Interna-
tional Conference on Intelligent Games and Simulation (GAMEON’), pages –.
EUROSIS-ETI, Ghent University, Ghent, Belgium.

Van derHeijden,M. J.M., Bakkes, S. C. J., and Spronck, P.H.M. (). Dynamic formations
in real-time strategy games. In Hingston, P. and Barone, L., editors, Proceedings of the
IEEE  Symposium on Computational Intelligence and Games (CIG’), pages –.
IEEE Press, Piscataway, New York, USA.

Van derMeulen,M. (). Weight assessment in evaluation functions. In Beal, D. F., editor,
Advances in Computer Chess , pages –. Elsevier Science Publishers, Amsterdam,e
Netherlands.

Van der Sterren, W. (). Squad tactics - Team AI and emergent maneuvers. In Rabin, S.,
editor, AI Game Programming Wisdom, pages –. Charles River Media, Inc., Hing-
ham, Massachusetts, USA.

References 169

Van Diepen, P. and Van den Herik, H. J. (). Schaken voor Computers. Academic Service,
Schoonhoven, e Netherlands.

Van Lankveld, G., Spronck, P. H. M., and Van den Herik, H. J. (). Incongruity-based
adaptive game balancing. In Van den Herik, H. J. and Spronck, P. H. M., editors, Pro-
ceedings of the th Advances in Computer Games conference (ACG). Tilburg centre for
Creative Computing (TiCC), Tilburg University, Tilburg, e Netherlands. (To appear).

Van Waveren, J. M. P. and Rothkrantz, L. J. M. (). Artificial player for Quake III Arena.
In Mehdi, Q. H., Gough, N. E., and Al-Dabass, D., editors, Proceedings of the nd Inter-
national Conference on Intelligent Games and Simulation (GAMEON’), pages –.
EUROSIS-ETI, Ghent University, Ghent, Belgium.

Velasco, C. (). JohnWoo’s strangleholdmusic team interview. Music Games. [Online].
Available: http://www.musicgames.net/Features_Display.aspx?id=.

Watson, I. (). Case-based reasoning is a methodology not a technology. Knowledge-
Based Systems, (–):–.

Weigand, H., Wieringa, R. J., Meyer, J.-J. Ch., and Starmans, R. J. C. M. (). Lecture
material of the SIKS basic course: Research methods and methodology for IKS. SIKS,
Utrecht University, Utrecht, e Netherlands.

Wesley,M. (). Navigating detailedworldswith a complex, physically driven locomotion:
NPC skateboarder AI in EA’s skate. In Mateas, M. and Darken, C., editors, Proceedings of
the th Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE
), pages –. AAAI Press, Menlo Park, California, USA.

Wettschereck, D., Aha, D. W., and Mohri, T. (). A review and comparative evaluation
of feature weighting methods for lazy learning algorithms. Artificial Intelligence Review,
:–.

Wolf, M. (). Video game hardware, software and services. ABI Research,
Oyster Bay, New York, USA. [Online] Available: http://www.abiresearch.com/research/
-Video+Game+Hardware,+Software+and+Services.

Woodcock, S. (). Game AI: e state of the industry. Game Developers Magazine,
(). [Online] Available: http://www.gamasutra.com/view/feature//game_ai_the_
state_of_the_industry.php.

Woodcock, S. (). AI roundtable moderator’s report. [Online]. Available: http://www.
gameai.com/cgdcnotes.html.

Wray, R. E. and Laird, J. E. (). Variability in human behaviour modeling for military
simulations. In Proceedings of the  Behaviour Representation in Modeling and Simu-
lation (BRIMS) Conference. [Online] Available: http://www.sisostds.org/.

170 References

Wright, I. and Marshall, J. (). Egocentric AI processing for computer entertainment: A
real-time process manager for games. In Mehdi, Q. H., Gough, N. E., and Al-Dabass, D.,
editors, Proceedings of the st International Conference on Intelligent Games and Simula-
tion (GAMEON’), pages –. EUROSIS-ETI, Ghent University, Ghent, Belgium.

Wright, W. (). Interview: Will Wright on stupid fun club, Spore, iPhone and more. In-
dustryGamers on Wednesday, June , . [Online]. Available: http://www.gamedaily.
com/articles/news/interview-will-wright-on-stupid-fun-club-spore-iphone-and-more/
?biz=.

Yampolskiy, R. V. (). Human computer interaction based intrusion detection. In
ITNG ’: Proceedings of the International Conference on Information Technology, pages
–. IEEE Press, Piscataway, New York, USA.

Yannakakis, G. N. and Hallam, J. (). Towards optimizing entertainment in computer
games. Applied Artificial Intelligence, ():–.

Yannakakis, G. N. and Hallam, J. (). Real-time game adaptation for optimizing
player satisfaction. IEEE Transactions on Computational Intelligence and AI in Games,
():–.

Yi, M. (). Advertisers pay for video games - Product placement tradition no longer
free ride for business. San Francisco Chronicle, Hearst Communications, San Francisco,
California, USA. July , .

Zarozinski, M. (). An open-fuzzy logic library. In Rabin, S., editor, AI Game Program-
ming Wisdom, pages –. Charles River Media, Inc., Hingham, Massachusetts, USA.

Zhang, Z. and Yang, Q. (). Featureweightmaintenance in case bases using introspective
learning. Journal of Intelligent Information Systems, ():–.

A
Game environments

In this appendix, we provide a description of the video-game environments that were utili-
sed in the present research. First, we describe Q III CTF (Section A.). Subsequently,
we describe S (Section A.).

A.1 Quake III CTF

e Q III CTF game environment presents an action game in which the game AI ope-
rates on a tactical level. In the experiments reported on in the thesis, the game AI controls
four game characters.

e game environment provides multi-player, first-person shooter gameplay. Players of
the game operate in relatively minimalist maps, in which they attempt to defeat opponent
players by utilising weapons (e.g., a rocket launcher), and so-called power-ups (e.g., a health
package). Both the weapons and power-ups are distributed over the map. e most played
game mode of Q III is Capture the Flag (CTF). roughout this thesis we abbreviated
‘the Q III Capture the Flag game mode’ to ’Q III CTF’ to improve readability.

Play of the game: Q III CTF is a teamgame that is played on symmetricalmaps. In the
game, two teams are pitted against each other. Each teamof players starts at their ’base’,
which contains a flag. A team scores a point when it is able to recover the flag from
the opponent’s base, while retaining its own flag. e team to first reach a predefined
score, or to obtain the most points within a predefined time, wins the game.

States of the game: Play of a CTF game can be abstracted in a finite state machine, where
the state in which the game resides determines the tactical behaviour of the game
characters. Q III CTF is generally abstracted in a finite state machine consisting
of four states, viz. () both flags at their base, () enemy flag stolen, () both flags sto-
len, and () base flag stolen. e relationship between the four states is illustrated in
Figure A.. To play Q II CTF effectively, for each state of the game the game AI
needs to be able to perform distinct tasks, such as cooperating with team mates to
retrieve the base flag, or cooperating with team mates to attack the opponent players.

172 Game environments

Figure A.: Finite state machine of Q III CTF. e game starts in the state ‘both flags at their
base’.

Weapons and power-ups: In Q III CTF, a player is provided with eight distinct we-
apons that are distributed across the map. In order of increasing effectiveness, the
eight weapons are () the machine gun, () the shotgun, () the plasma gun, () the
lightening gun, () the grenade launcher, () the rocket launcher, () the rail gun, and
() the BFG.
In addition to weapons, a player can gather power-ups that are distributed across the
map. When gathered, the power-ups provide a player with () additional health, or ()
additional psychical strength (i.e., so-called armor).

In , parts of the game source code were released by the developers of the game. e
released source code enabled enthousiasts to design their own modifications of the game,
and provided AI researchers with the means to adapt the behaviour of the Q III CTF
game characters. In , the complete source code of the game was released under the
GNU General Public License.

A.2 SPRING

e S game environment presents a real-time strategy game in which the game AI
operates on a strategic level. In the experiments reported on in the thesis, the game AI con-
trols over one hundred game characters.

Below we provide a description of the game S. We organise our description as fol-
lows. First, we outline the play of the game. Second, we describe the unit types that can be
employed by the player. ird, we go into the topic of environment visibility. Fourth, we dis-
cuss how a so-called tech tree is incorporated in the game. Fifth, we discuss the complexity
of the game. Sixth, we give an overview of third-party game AIs that are available for the
S game.

Play of the game: S is a typical and open-source RTS game. It presents a strategic, si-
mulated war-game environment. In the game, generally two players are pitted against

A.2 | SPRING 173

each other. is type of play is investigated in the thesis. Alternatively, it is also com-
mon that two teams of players are pitted against each other.

At the start of the game, each player is provided with one unit, the Commander unit.
Each player needs to gather in-game resources for the construction of units and buil-
dings.e in-game resources that can be gathered are ()metal, which can be gathered
directly, and () energy, which needs to be generated via wind turbines or solar pa-
nels. e game supports over  different unit types. For instance, some unit types
are directly involved in combat and are mobile (e.g., tank units), where other unit ty-
pes are not directly involved in combat and have a fixed location (e.g., metal extractor
buildings). e goal of the game is to defeat an opponent army in a real-time battle,
by using effectively the constructed units and buildings. A S game is won by the
player who first destroys the opponent’s Commander unit.

Unit types: As mentioned, S supports over  different unit types. e unit types
available to the player can be roughly divided into two groups, viz. () combat units,
and () building units.

Combat units are units that are directly involved in combat with the opponent player,
and are mobile. Units in this group are either () k-bot units, () tank units, () air-
craft units, () ship units, or () amphibious units. Generally, the player can choose
to construct many relatively inexpensive combat units (that are relatively powerless),
or save in-game resources to construct few relatively expensive combat units (that are
relatively powerful). In the S game, the most powerful combat unit is able to
destroy a Commander unit with a single shot.

Building units (or in short, buildings) are not directly involved in combat, and have a
fixed location. Units in this group are either () buildings that gather in-game resour-
ces (e.g., a metal extractor), () buildings that construct combat units (e.g., a k-bot
factory), () buildings that defend the base of the player (e.g., a light-laser turret), or
() buildings that provide additional information to the player (e.g., a radar tower), or
hide information from the opponent player (e.g., a radar jammer).

Environment visibility: S implements a so-called ‘Line of Sight’ visibilitymechanism
to each unit. is implies that game AI only has access to observational data of those
parts of the environment that are visible to its own units (illustrated in Figure A.).
When the game AI’s information is restricted to what its own units can observe, we
call this an ‘imperfect-information environment’.Whenwe allow the gameAI to access
all information, regardless whether it is visible to its own units or not, we call this a
‘perfect-information environment’.

Tech tree: S employs a so-called tech tree (Adams andRollings, ) that represents
the possible paths of in-game ‘research actions’ that a player of the game can take.e
name ‘tech tree’ is common terminology in the domain of video games, and is derived
from ‘technology tree’. A tech tree is a directed acyclic graph. For all players of the
game, the employed tech tree is identical. e manner in which each player traverses
the tree is independent from the in-game actions of other players. Each player starts

174 Game environments

Figure A.: Game observation in the S game. Units controlled by the game AI are currently
residing in the highlighted region. In an imperfect-information environment, only infor-
mation in the highlighted region is available. In a perfect-information environment, in-
formation for both the highlighted and the grey region is available.

in the root of the tech tree. By traversing the tech tree, the particular player will be
provided with advanced levels of technology. For instance, by performing certain in-
game research actions, a player may be provided with more advanced aircraft units.
Traversing the tech tree is generally advantageous, yet there is a cost for doing so in
time and in in-game resources.

A concise representation of the tech tree of S is provided in Figure A.. In the
S game, three levels of technology are available: Level-, Level-, and Level-.
At the start of the game, each player can only construct Level- units and Level- buil-
dings. Later in the game, after a player has performed the required in-game research,
advanced units and buildings of Level- and Level- become available to the particular
player. For instance, a player may choose to focus on constructing the most advanced
Level- k-bot units. However, by doing so, a player invests a significant amount of time
and in-game resources, that cannot be spent on constructing other potentially helpful
units, such as Level- tanks and Level- aircrafts.

Complexity: In the domain of games, the complexity of a game is generally expressed in
terms of () the state space, and () the action space. In addition to having a large state
space (e.g., we experiment with typical 137x137 maps, while maps up to 548x548 are

A.2 | SPRING 175

Figure A.: Concise representation of the tech tree of S.

not uncommon, that can involve hundreds of units and buildings), S’s action
space is comparatively large.
We roughly estimate the action space in S to beO(2W(A∗P)+2T (D+S)+B(C))
(cf. Aha et al., ), whereW is the current number of workers, A is the number of
assignments workers can perform (e.g., construct a building, repair a unit), P is the
average number of workplaces, T is the number of troops (combat units plus wor-
kers), D is the average number of directions that a unit can move, S is the choice of
troop’s stance (e.g., stand, patrol, attack), B is the number of buildings, and C is the
average choice of units to construct at a building. For a simple early game scenario, this
estimate yields a decision complexity of 1.3x107, which is substantially higher than the
average number of possible moves in similar RTS games (e.g., for W, this is ap-
proximately 1.5x103 (Aha et al., )), and many board games (e.g., for chess, this is
approximately ).
In addition, S features () a partially observable environment that contains ad-
versaries who modify the game state asynchronously (and whose decision models are
unknown), and () a need for players to make their decisions in real-time (i.e., under
severe time constraints) and execute multiple orders simultaneously (cf. Ponsen et al.,
).

Game AIs: In our experiments with case-based adaptive game AI we used a total of five
game AI’s, viz. () AAI, () TSI, () CSAI, () RAI, and () NTAI.
AAI is a configuration file based game AI that was developed by Alexander Seizinger.
It may be considered the default game AI of S, as it is shipped with the game.

176 Game environments

e game AI features powerful group handling, effective resource management, and
the ability to learn and adjust its behavior offline on the basis of game observations. It
can detect zones of conflict in online play. e configuration files allow AI designers
to tweak rates of base expansion and unit production.
TSI is a configuration file based game AI that was developed by Mateusz Baran and
Michal Urbańczyk. e game AI uses an extensive pathfinding system that efficiently
finds and exploits so-called choke points in the map. Its configuration files allow AI
designers to tweak rates of unit production.
CSAI is a generalized game AI that was developed by Hugh Perkins. It is developed
as a proof of concept for a C based game AI. e game AI implements an aggressive
and rapid “rush” strategy.
RAI is a generalized game AI that was developed by “Reth”. e game AI features
effective handling of individual units and of groups of units. e strategy employed
by the game AI is focussed on rapid construction of the base, and erecting secondary
bases of operation.
NTAI is a configuration file based game AI that was developed by Tom Nowell. e
game AI features highly effective resource management, and detection of zones of
conflict. e strategy that is followed by the game AI is highly customizable. Its con-
figuration files allow AI designers to tweak rates of unit production. e game AI is
bundled with a visual toolkit, that allows AI designers to easily generate configuration
files.

B
Features of game observations in SPRING

In this appendix, we provide an overview of all features that are used in the three main com-
ponents of case-based adaptive game AI. at is, the overview concerns features of game
observations in the S game. Table B. successively lists for each row of the table the
name of the feature, a description of the feature, and marks whether the feature was used
in our evaluation function (Chapter ), in our adaptation mechanism (Chapter ), or in our
incorporation of opponent modelling (Chapter ).

In our research we investigated case-based adaptive game AI as a proof of concept. We
focussed primarily on demonstrating the effectiveness of case-based adaptive game AI in
an actual video game. However, we did not attempt to establish the best solution for our
problem domain. We admit that by manually defining and selecting the game features, we
may restrict the effectiveness of case-based adaptive game AI. e investigation of further
improvements with respect to the definition and selection of features is considered a topic
for future research. We hope that the presented overview of incorporated features provides
valuable insight into possible limitations, and enables fellow researchers to establish in the
future increasingly effective implementations of case-based adaptive game AI.

178 Features of game observations in SPRING

Feature Description EVA AM OM

Visibility Percentage of the game environment visible to the
friendly player

×

Phase e phase of the game × ×
Material strength e strength of the player armies × ×
Commander safety e safety of the Commander units × ×
Positions captured e number of map positions captured by the

players
×

Economical strength e in-game resources generated by the players ×
Unit count Number of units constructed by the players ×
K-Bots Number of k-bot units constructed by the oppo-

nent
×

Tanks Number of tank units constructed by the oppo-
nent

×

Aircrafts Number of aircraft units constructed by the oppo-
nent

×

Advanced buildings Number of advanced buildings constructed by the
opponent

×

Metal extractors Number of metal extractors constructed by the
opponent

×

Solar panels Number of solar panels constructed by the oppo-
nent

×

Wind turbines Number of wind turbines constructed by the op-
ponent

×

Metal extractors (first attack) Time of first attack on a friendly-player metal ex-
tractor

×

Solar panels (first attack) Time of first attack on a friendly-player solar panel ×
Wind turbines (first attack) Time of first attack on a friendly-player wind tur-

bine
×

Table B.: Features of game observations in S. e table marks whether a feature was used in
our evaluation function (EVA), in our adaptationmechanism (AM), or in our incorporation
of opponent modelling (OM).

C
Evaluation function for SPRING

In this appendix, we give an extensive description of the evaluation function that was esta-
blished in Chapter . e evaluation function for S is denoted as follows.

v(p) = wp

∑
u

wu(cu1
−
ou2

R
) + (1−wp)

∑
r∈d

wr(
or2
Rr2

−
or1
Rr1

) (C.)

wherewp ∈ [0, 1] is a free parameter to determine the weight of each term of the evaluation
function, p ∈ {1, 2, 3, 4, 5} is a parameter that represents the current phase of the game,wu

is the experimentally determinedweight of the unitu, cu1
is the number of own units of type

u that the game AI has, ou2
is the observed number of opponent’s units of type u, R ∈ [0, 1]

is the fraction of the environment that is visible to the game AI, wr is the experimentally
determined weight of the radius r, or2 is the observed number of own units of the game
AI within a radius r of the opponent’s Commander unit, Rr2 ∈ [0, 1] is the fraction of the
environment that is visible to the opponent within the radius r, or1 is the observed number
of units of the opponent within a radius r of the game AI’s Commander unit, Rr1 ∈ [0, 1] is
the fraction of the environment that is visible to the game AI within the radius r, and d is
the set of experimentally determined game-unit radii {500, 1000, 2000}.

e unit-type weights wu are as follows. We note that the unit-type weights have been
learned automatically, on the basis of a case base of game observations (see Subsection ..).

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=-.

• unit-type[]=.

• unit-type[]=-.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

180 Evaluation function for SPRING

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=-.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=-.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=-.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=-.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=-.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.
• unit-type[]=-.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.

181

• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.

• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.
• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

• unit-type[]=.

e radius weights wr are as follows. We note that the radius weights have been deter-
mined by the researcher.

• radius[]=.
• radius[]=.
• radius[]=.

e term weights wp are as follows. We note that the term weights have been learned
automatically, on the basis of a case base of game observations (see Subsection ..).

• phase[]=-.
• phase[]=.
• phase[]=-.
• phase[]=.
• phase[]=.

D
Parameters of strategic behaviour in

SPRING

In this appendix, we describe the  parameters of strategic behaviour that were used in
our experiments with case-based adaptive game AI in S. e parameters affect the
behaviour of the ‘AAI (cb)’ game AI on a high, strategic level, and not on a low, tactical level.
For example, the parameter ‘aircraft_rate’ determines on a high level how often aircraft units
should be constructed. How exactly the constructed aircraft units should be employed is
decided by lower-level game AI.

Aircraft_rate: Determines howmany air units AAI will build (a value of  means that every
th unit will be an air unit; a value of  means that constructing air units is disabled).

Air_defence: Determines how often air-defence units will be built.

Fast_units_rate: Determines the amount of units that will be selected taking their maxi-
mum speed into account (e.g., 4 → 25%).

High_range_units_rate: Determines the amount of units that will be selected taking we-
apons range into account (e.g., 4 → 25%).

Max_air_group_size: Maximum air group size.

Max_anti_air_group_size: Maximum size of anti-air groups (ground, hover, or sea).

Max_assistants: Maximum number of builders assisting construction of other units/buil-
dings.

Max_base_size: Maximum base size in sectors.

Max_builders: Maximum builders used at the same time

Max_builders_per_type: How many builders of a certain type may be built.

Max_defences: Maximum number of defences AAI will build in a sector.

184 Parameters of strategic behaviour in SPRING

Max_factories_per_type: How many factories of a particular type may be built.

Max_group_size: Maximum group size; AAI will create additional groups if all groups of a
certain type are full.

Max_metal_cost: Maximum metal cost, units that cost more metal will not be built.

Max_metal_makers: Maximum number of metal makers, set to  if you want to disable
usage of metal makers.

Max_mex_distance: Tells AAI how many sectors away from its main base it is allowed to
build metal extractors.

Max_mex_defence_distance: Maximumdistance to basewhereAAI defendsmetal extrac-
tors with cheap defence-buildings.

Max_scouts: Maximum number of scouts that are used at the same time.

Max_stat_arty: Maximum number of stationary artillery (e.g., big-bertha artillery).

Max_storage: Maximum number of storage buildings.

Min_air_support_efficiency: Minimum efficiency of an enemy unit to call for air support.

Min_assistance_buildspeed: Minimum workertime / buildspeed of a unit to be taken into
account when.

Min_factories_for_defences: AAI will not start to build stationary defences before it has
built at least that number of factories.

Min_factories_for_storage: AAI will not start to build stationary defences before it has
built at least that number of storage buildings.

Min_factories_for_radar_jammer: AAI will not start to build stationary defences before
it has built at least that number of radars and jammers.

Min_sector_threat: e higher the value the earlier AAI will stop to build further defences
(if it has not already reached the maximum number of defences per sector).

Unit_speed_subgroups: AAI sorts units of the same category (e.g. ground assault units)
into different groups according to their max speed (so that slow and fast units are in
different groups to prevent the slower ones from arriving in combat much later). is
parameter indicates how many different groups will be made.

Summary

Over the last decades,modern video games have become increasingly realistic in their visual
and auditory presentation. e games in question generally rely on Artificial Intelligence
(AI). However, AI in games has not yet reached a high degree of realism. Now and in the
future, game AI may be enhanced by enabling it to adapt intelligently exhibited behaviour
to game circumstances. Such enhanced game AI is called ‘adaptive game AI’.

Our research ismotivated by the fact that, in practice, adaptive gameAI in video games is
seldom implemented because currently it requires numerous trials to learn effective behavi-
our in online gameplay (i.e., game adaptation is not rapid). In addition, game developers are
concerned that applying adaptive game AI may result in uncontrollable and unpredictable
behaviour (i.e., game adaptation is not reliable).

From the above motivation for the research, we derive the following problem statement:
Towhat extent can adaptive gameAI be created with the ability to adapt rapidly and reliably
to game circumstances? To address the problem statement, we first investigate the currently
typical approach to adaptive game AI: incremental adaptive game AI. Subsequently, we in-
vestigate an alternative, novel approach to adaptive game AI: case-based adaptive game AI.

After providing some background in Chapter , we start our research in Chapter  by
studying RQ: To what extent is incremental adaptive game AI able to adapt rapidly and
reliably to game circumstances in an actual video game? To answer the question, we imple-
ment the approach in the game Q III CTF. From experiments that test the approach
we may conclude that the approach is capable of adapting successfully to changes in the op-
ponent behaviour. However, application of the approach as an online learning mechanism is
hampered by occasionally very long learning times due to an improper balance between ex-
ploitation and exploration. We discuss why this issue characteristically follows from the in-
cremental adaptive gameAI approach, which requires either () a high quality of the domain
knowledge used (which generally is unavailable to the AI), or () a large number of trials to
learn effective behaviour online (which is highly undesirable in an actual video game). From
the results of the chapter we may conclude that the characteristics of incremental adaptive
game AI prohibit our goal of establishing game AI capable of adapting rapidly and reliably
to game circumstances. erefore, we examine an alternative for the incremental approach,
which we coin case-based adaptive game AI.

In Chapter  we define case-based adaptive game AI as an approach to game AI where
domain knowledge is gathered automatically by the game AI, and is immediately (i.e., with-
out trials and without resource-intensive learning) exploited to create effective behaviour.
e approach collects character and game-environment observations, and extracts from
those a ‘case base’. In the chapter we report on two experiments to obtain an early indication
of the effectiveness of case-based adaptive game AI. e results of these two experiments
indicate that effective AI in an actual video game may indeed be established by following
the approach to case-based adaptive game AI. For case-based adaptive game AI to be suc-
cessful in an actual, complex video game, three main components are required. e three
components are () an evaluation function, () an adaptation mechanism, and () opponent
modelling. e three main components are investigated in Chapter , , and , respectively.

186 Summary

In Chapter , we study RQ: To what extent can a suitable evaluation function for a com-
plex video game be established? To answer the question, we establish an evaluation function
for the S game. S is an actual, complex real-time strategy (RTS) game. We in-
corporate machine learning techniques to automatically tune the evaluation function on
the basis of a case base of game observations. Experiments that test the evaluation function
show that just before the game’s end the function is able to predict correctly the outcome
of the game with an accuracy that approaches one hundred per cent. Considering that a
S game may be won suddenly, and thus the outcome of the game is difficult to pre-
dict, this is a satisfactory result. In addition, the evaluation function makes fairly accurate
predictions before half of the game is played. From these results, we may conclude that a
suitable evaluation function for S can be established by exploiting a case base of game
observations.

In Chapter , we study RQ:To what extent can amechanism be employed to provide on-
line adaptation of game AI? To answer the question, we establish an adaptation mechanism
for video games. e mechanism aims at allowing game AI to adapt rapidly and reliably to
game circumstances. To this end, it is incorporated in a framework for case-based adapta-
tion. e mechanism exploits game observations that are gathered in a case base to (A)
generalise offline over observations, (B) initialise the game AI with a predictably effective
game strategy, and (C) adapt online the game AI to game circumstances. e case-based
adaptation mechanism is tested on three different maps in the S game. Experiments
that test the adaptationmechanism in online play show that themechanism can successfully
obtain effective performance. In addition, the adaptationmechanism is capable of upholding
a draw for a sustained period of time. From these results, we may conclude that the mecha-
nism for case-based adaptation of game AI provides a strong basis for adapting rapidly and
reliably behaviour online, in an actual video game.

In Chapter , we study RQ: To what extent can models of the opponent player be es-
tablished and exploited in a complex video game? To answer the question, we implement
techniques to establish and exploit models of the opponent player in the gameAI of S.
Experiments with establishing opponent models in S reveal that for the game relati-
vely accuratemodels of the opponent player can be established. Furthermore, an experiment
with exploiting opponentmodels shows that in S, exploiting the established opponent
models in an informed manner leads to more effective behaviour in online play. From these
results, wemay conclude that opponentmodellingmay successfully be incorporated in game
AI that operates in actual video games, such as the complex S game.

After the investigation of the three main components of case-based adaptive game AI,
in Chapter  we study RQ: To what extent is case-based adaptive game AI able to adapt
rapidly and reliably to game circumstances in an actual video game? To answer the question,
we perform experiments that integrate the three main components of case-based adaptive
game AI. e experiments test case-based adaptive game AI in S. Without opponent
modelling, case-based adaptive game AI already provides a strong basis for adapting rapidly
and reliably the player’s behaviour in the game. In our case-based approach to adaptive game
AI, opponent models are generated automatically, on the basis of player observations that
are gathered in the case base. When enhancing the approach by incorporating opponent
modelling, in the experiments, we observe an increased effectiveness of the player’s beha-

Summary 187

viour. From these results, we may conclude that opponent modelling further improves the
strength of case-based adaptive game AI, and thus makes its implementation in an actual
video game even more worthwhile. In addition, we provide an analysis of the practical ap-
plicability of case-based adaptive game AI. We discuss four topics, namely () scalability, ()
dealingwith imperfect information, () generalisation to different games, and () acceptance
by game developers.

Chapter  concludes the thesis by answering the five research questions and the problem
statement. Given that case-based adaptive game AI is capable of adapting to game circum-
stances rapidly and reliably, and considering that we demonstrated its effectiveness in an
actual, complex video game, we may conclude that the approach is a strong candidate to be
incorporated in game AI of the future, i.e., in actual, commercially released video games. In
addition to the above conclusion, Chapter  presents recommendations and ideas for future
research.

Samenvatting

Moderne videospelen zijn door de jaren heen steeds realistischer geworden, met name wat
hun visuele en auditieve presentatie betreft. Daarentegen heeft de kunstmatige intelligentie
die is opgenomen in de spelen nog geen hoge graad van realisme bereikt. Deze zogenoemde
game AI zal in dit onderzoek en in de toekomst worden verbeterd door de game AI in staat
te stellen zich intelligent aan te passen aan de omstandigheden in het spel. Game AI met
deze mogelijkheid noemen we adaptive game AI. De motivatie van ons onderzoek is gele-
gen in twee problemen die ervoor zorgen dat in de praktijk adaptive game AI zelden wordt
opgenomen in spelen. Het eerste probleem is dat de huidige adaptive game AI een aanzien-
lijk aantal leermomenten nodig heeft om effectief gedrag te leren tijdens het spelen van een
spel (dat wil zeggen, de game AI past zich niet snel genoeg aan de omstandigheden in het
spel aan). Het tweede probleem is dat de ontwikkelaars van spelen bezorgd zijn dat het op-
nemen van adaptive game AI ertoe leidt dat er oncontroleerbaar en onvoorspelbaar gedrag
zal worden vertoond (dat wil zeggen, de game AI is niet betrouwbaar).

Vanuit de genoemde motivatie formuleren we onze probleemstelling: In welke mate kan
adaptive game AI worden opgesteld die de mogelijkheid heeft zich snel en betrouwbaar aan
te passen aan de omstandigheden in een videospel? Om de probleemstelling aan te pakken,
onderzoeken we eerst een voor de hand liggende, typische benadering om adaptive game AI
te verkrijgen: incrementele adaptive game AI. Vervolgens onderzoeken we een alternatieve,
nieuwe benadering voor adaptive game AI: case-based adaptive game AI.

In Hoofdstuk  beginnen we met een overzicht van gerelateerde achtergrondinforma-
tie. Vervolgens starten we ons onderzoek in Hoofdstuk  met het bestuderen van de eerste
onderzoeksvraag (RQ, afkorting van het Engelse “research question”), RQ: In welke mate
is incrementele adaptive game AI in staat zich snel en betrouwbaar aan te passen aan de
spelomstandigheden in een bestaand videospel? Teneinde de vraag te beantwoorden, imple-
menteren we incrementele adaptive game AI in het spel Q III CTF. Uit experimenten
met de incrementele benadering mogen we concluderen dat de benadering in staat is zich
succesvol aan te passen aan wisselend gedrag van tegenstanders in het spel. We constateren
echter ook dat toepassing van de benadering als een online leermechanisme niet tot volle
ontplooiing kan komen door incidenteel zeer lange leerperioden. Deze zijn het gevolg van
een onjuiste balans tussen exploratie en exploitatie. We beschrijven waarom dit fenomeen
op logische wijze volgt uit karakteristieken van de incrementele benadering, welke vereist
() domeinkennis van een hoge kwaliteit (dit is doorgaans niet beschikbaar voor de game
AI), of () een aanzienlijk aantal leermomenten om tijdens het spel effectief gedrag te leren
(dit is hoogst ongewenst in een videospel). Uit de resultaten van het hoofdstuk mogen we
concluderen dat de karakteristieken van de incrementele benadering het bereiken van ons
doel belemmeren. Het doel is hier het ontwikkelen van game AI die in staat is zich snel en
betrouwbaar aan te passen aan de spelomstandigheden. Derhalve stellen we een alternatief
op voor de incrementele benadering, die we case-based adaptive game AI noemen.

InHoofdstuk  definiërenwe case-based adaptive gameAI als een benadering voor game
AI waarin domeinkennis automatisch wordt vergaard door de AI, en direct (dat wil zeggen,
zonder de benodigde leermomenten) wordt geëxploiteerd om effectief gedrag op te stellen.

190 Samenvatting

De benadering verzamelt spelkarakter- en spelomgevingsobservaties, en leidt daaruit een
case base af. In het hoofdstuk doen we verslag van twee experimenten die we uitvoeren om
een vroege indicatie van de effectiviteit van case-based adaptive game AI te verkrijgen. De
resultaten van de twee experimenten geven aan dat een effectieve AI in een modern video-
spel inderdaad opgesteld kan worden door de case-based benadering tot adaptive game AI
te volgen. Om succesvol te zijn in een modern, complex videospel, vereist case-based adap-
tive game AI drie componenten. Deze drie componenten zijn () een evaluatiefunctie, ()
een adaptatiemechanisme, en () modellering van de tegenstander. Deze drie componenten
worden achtereenvolgens onderzocht in Hoofdstuk , , en .

In Hoofdstuk  onderzoeken we RQ: In welke mate kan een geschikte evaluatiefunctie
voor een complex videospel worden opgesteld? Teneinde de vraag te beantwoorden, ontwer-
penwe een evaluatiefunctie voor het spel S. S is eenmodern, complex real-time
strategy (RTS) spel. We gebruiken machine learning technieken om de functie automatisch
af te stellen op basis van een case base van spelobservaties. Experimenten met de evalua-
tiefunctie laten zien dat de functie vlak voor het einde van het spel de uitslag correct kan
voorspellen met een nauwkeurigheid die de honderd procent benadert. Aangezien S
plotseling gewonnen kan worden, en de uitkomst van het spel derhalve lastig is te voorspel-
len, is dit resultaat tevredenstellend. Bovendien doet de evaluatiefunctie tamelijk nauwkeu-
rige voorspellingen voordat de helft van het spel is gespeeld. Uit deze resultaten mogen we
concluderen dat een geschikte evaluatiefunctie voor S kan worden opgesteld door het
exploiteren van een case base van spelobservaties.

In Hoofdstuk  onderzoeken we RQ: In welke mate kan een mechanisme worden aan-
gewend dat voorziet in online adaptatie van game AI? Teneinde de vraag te beantwoorden,
stellen we een adaptatiemechanisme op voor videospelen. Het mechanisme is erop gericht
game AI in staat te stellen zich snel en betrouwbaar aan te passen aan de omstandigheden
in het spel. Om dit te bereiken is het opgenomen in een raamwerk voor case-based adap-
tatie. Het mechanisme exploiteert spelobservaties die zijn verzameld in een case base voor
(A) offline generalisatie over spelobservaties, (B) initialisatie van game AI met een naar ver-
wachting effectieve spelstrategie, en (C) online adaptatie van de game AI naar de omstan-
digheden in het spel. Het case-based adaptatiemechanisme is getest op drie verschillende
spelomgevingen in S. Experimenten die het adaptatiemechanisme testen tijdens spe-
len van het spel, laten zien dat het mechanisme effectief gedrag oplegt aan de game AI. Het
adaptatiemechanisme is bovendien in staat een gelijkspel in stand te houden voor een onaf-
gebroken tijdsperiode. Uit deze resultatenmogen we concluderen dat het mechanisme voor
case-based adaptatie van game AI een solide basis biedt voor snelle en betrouwbare online
adaptatie van gedrag in een echt videospel.

In Hoofdstuk  onderzoeken we RQ: In welke mate kunnen modellen van de tegen-
stander worden opgesteld en geëxploiteerd in een complex videospel? Teneinde de vraag te
beantwoorden, implementeren we technieken tot opstellen en exploitatie van modellen van
de tegenstander in de game AI van S. Experimenten met het opstellen van tegen-
standermodellen in S laten zien dat in het spel relatief nauwkeurige modellen van de
tegenstander kunnenworden opgesteld. Een experimentmet het exploiteren van tegenstan-
dermodellen laat daarnaast zien dat in S het der zake kundig exploiteren van tegen-
standermodellen tot meer effectief gedrag leidt tijdens het spelen van het spel. Uit deze re-

Samenvatting 191

sultaten mogen we concluderen dat modellering van de tegenstander succesvol kan worden
opgenomen in game AI welke opereert in echte videospelen, zoals het complexe S.

Na het onderzoeken van de drie componenten van case-based adaptive game AI, on-
derzoeken we in Hoofdstuk  RQ: In welke mate is case-based adaptive game AI in staat
zich snel en betrouwbaar aan te passen aan de spelomstandigheden in een bestaand video-
spel? Teneinde de vraag te beantwoorden, voeren we experimenten uit met een adaptive
game AI waarin de drie componenten van case-based adaptive game AI zijn geïntegreerd.
De experimenten testen case-based adaptive game AI in S. Zonder modellering van
de tegenstander is case-based adaptive gameAI reeds in staat een solide basis te bieden voor
snelle en betrouwbare aanpassing van game AI. In onze case-based benadering tot adaptive
gameAIworden tegenstandermodellen automatisch gegenereerd, op basis van spelobserva-
ties die zijn verzameld in de case base. Bij exploitatie van deze modellen nemen we een toe-
name van de effectiviteit van case-based adaptive game AI waar. Uit deze resultaten mogen
we concluderen dat het modelleren van de tegenstander de kracht van case-based adaptive
game AI verder verbetert. Derhalve maakt het de implementatie van case-based adaptive
game AI in een bestaand spel nog meer lonend. In aanvulling op deze conclusie geven we
een analyse van de praktische toepasbaarheid van case-based adaptive game AI, waarin we
vier onderwerpen bespreken: () schaalbaarheid, () omgaan met imperfecte informatie, ()
generalisatie naar andere spelen, en () acceptatie door spelontwikkelaars.

In Hoofdstuk  sluiten we het proefschrift af door de vijf onderzoeksvragen en de pro-
bleemstelling te beantwoorden. Gezien het feit dat case-based adaptive game AI in staat
blijkt zich snel en betrouwbaar aan te passen aan de spelomstandigheden, en gezien het feit
dat we de effectiviteit van de benadering hebben gedemonstreerd in een echt, complex vi-
deospel, mogen we concluderen dat de benadering een sterke kandidaat is voor inlijving in
game AI van de toekomst, dat wil zeggen, in moderne, commercieel uitgebrachte videospe-
len. In aanvulling op deze conclusie, presenterenwe inHoofdstuk  aanbevelingen en ideeën
voor toekomstig onderzoek.

Curriculum vitae

Sander Bakkes was born in Swalmen, the Netherlands, on January , . He studied In-
formation Technology (IT) at the Eindhoven Fontys University for Applied Sciences, where
he received his B.Sc. degree in with a specialisation in Telematics. During these studies,
he successfully completed internship research at Alcoa, Atos Origin, and Océ R&D. Sub-
sequently, he studied Knowledge Engineering at Maastricht University, where he received
his M.Sc. degree in  with a specialisation in Artificial Intelligence (AI). During these
studies, he investigated AI for team-oriented video games, under the daily supervision of
Dr. ir. P.H.M. Spronck.

After his graduation, he took up the position of IT engineer at Unilogic Networks. In ad-
dition, he ventured to a small language school near Taipei (Taiwan), to be active as a teacher
of the English language, on a voluntary basis.

ree days after his return from Taiwan, he joined Maastricht University as a Ph.D. can-
didate, supervised by Prof. dr. H.J. van den Herik, in cooperation (daily supervision) with
Dr. ir. P.H.M. Spronck. Later, he joined his supervisors in their move to Tilburg University,
to the newly established Tilburg centre for Creative Computing (TiCC). As a Ph.D. can-
didate, Sander investigated intensively AI for video games. He was funded by the Nether-
lands Organisation for Scientific Research (NWO), in the framework of the ROLEC project
(grant number ..). In addition, he received funding from the Dutch Ministry of
Economic Affairs, in the framework of the Interactive Collaborative Information Systems
(ICIS) project (grant number BSIK).

His research was published in international refereed journals, in the book series ‘AI
Game Programming Wisdom’, and in the proceedings of numerous (international) confer-
ences and workshops. His work ‘Rapid Adaptation of Video Game AI’ received the award
for best paper at the th International Conference on Intelligent Games and Simulation
(GAMEON’). As of , he is a reviewer of the IEEE Transactions on Computational
Intelligence and AI in Games.

Besides performing research, he was involved in lecturing (mainly in the courses Games
and AI, Informatics, and Philosophy of Science), guiding skills classes, and supervising and
cooperating with three Bachelor students, as well as two Master students. In addition, he
took a modest role in organising the DIR  workshop, the ALAMAS  symposium,
and the MICC-IKAT Promovendidag . Outside the academia, Sander freelanced as a
photographer, and as a DJ.

Currently, Sander is working as a post-doctoral researcher at the Digital Life Centre of
the Amsterdam University of Applied Sciences (HvA). e general focus of his research is
applying AI techniques for the purpose on improving the quality of life of senior citizens.
e research is performed in close collaboration with ViviumZorggroep, and the University
of Amsterdam.

Publications

e scientific work performed during the author’s Ph.D. research resulted in the following
publications.

Journal articles

. Bakkes, S. C. J., Spronck, P. H.M., and Van denHerik, H. J. (a). Opponentmodelling
for case-based adaptive game AI. Entertainment Computing, ():–.

. Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (b). Rapid and reliable
adaptation of video game AI. IEEE Transactions on Computational Intelligence and AI
in Games, ():–.

Book chapters

. Bakkes, S. C. J. and Spronck, P. H. M. (). Automatically generating a score function
for strategy games. In Rabin, S., editor,AIGame ProgrammingWisdom, pages –.
Charles River Media, Inc., Hingham, Massachusetts, USA.

Conference and workshop proceedings

. Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (a). Rapid adaptation of
video game AI. In Botti, V., Barella, A., and Carrascosa, C., editors, Proceedings of the th
International Conference on Intelligent Games and Simulation (GAMEON’), pages
–. EUROSIS-ETI, Ghent University, Ghent, Belgium.

. Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (b). Rapid adaptation of
video game AI (Extended version of a). In Hingston, P. and Barone, L., editors, Pro-
ceedings of the IEEE  SymposiumonComputational Intelligence andGames (CIG’),
pages –. IEEE Press, Piscataway, New York, USA.

. Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (c). Rapidly adapting
game AI. In Nijholt, A., Pantic, M., Poel, M., , and Hondorp, H., editors, Proceedings
of the th Belgian-Dutch Artificial Intelligence Conference (BNAIC ), pages –.
University of Twente, Enschede, e Netherlands.

. Chaslot, G. M. JB., Bakkes, S. C. J., Szita, I., and Spronck, P. H. M. (a). Monte-carlo
tree search: A new framework for game AI. In Mateas, M. and Darken, C., editors, Pro-
ceedings of the thArtificial Intelligence and InteractiveDigital EntertainmentConference
(AIIDE ), pages –. AAAI Press, Menlo Park, California, USA.

. Chaslot, G. M. JB., Bakkes, S. C. J., Szita, I., and Spronck, P. H. M. (b). Monte-carlo
tree search: A new framework for game AI. In Nijholt, A., Pantic, M., Poel, M., and Hon-
dorp, H., editors, Proceedings of the th Belgian-Dutch Artificial Intelligence Conference
(BNAIC ), pages –. University of Twente, Enschede, e Netherlands.

196 Publications

. Van der Heijden, M. J. M., Bakkes, S. C. J., and Spronck, P. H. M. (). Dynamic for-
mations in real-time strategy games. In Hingston, P. and Barone, L., editors, Proceedings
of the IEEE  Symposium on Computational Intelligence and Games (CIG’), pages
–. IEEE Press, Piscataway, New York, USA.

. Bakkes, S. C. J., Kerbusch, P., Spronck, P. H. M., and Van den Herik, H. J. (a). Au-
tomatically evaluating the status of an RTS game. In Van Someren, M., Katrenko, S.,
and Adriaans, P., editors, Proceedings of the Annual Belgian-Dutch Machine Learning
Conference (Benelearn ), pages –. University of Amsterdam, Amsterdam, e
Netherlands.

. Bakkes, S. C. J., Kerbusch, P., Spronck, P. H. M., and Van den Herik, H. J. (b). Pre-
dicting success in an imperfect-information game. In Van den Herik, H. J., Uiterwijk, J.
W. H. M., Winands, M. H. M., and Schadd, M. P. D., editors, Proceedings of the Com-
puter Games Workshop  (CGW ), MICC Technical Report Series -, pages
–. Maastricht University, Maastricht, e Netherlands.

. Bakkes, S. C. J., Spronck, P.H.M., andVandenHerik,H. J. (c). Phase-dependent eva-
luation in RTS games. In Dastani, M. M. and de Jong, E., editors, Proceedings of the th
Belgian-Dutch Conference on Artificial Intelligence (BNAIC ), pages –. Utrecht
University, Utrecht, e Netherlands.

. Schadd, F. C., Bakkes, S. C. J., and Spronck, P. H. M. (). Opponent modeling in real-
time strategy games. In Roccetti, M., editor, Proceedings of the th International Con-
ference on Intelligent Games and Simulation (GAMEON’), pages –. EUROSIS-
ETI, Ghent University, Ghent, Belgium.

. Van der Blom, L. L., Bakkes, S. C. J., and Spronck, P. H. M. (). Map-adaptive artifi-
cial intelligence for video games. In Roccetti, M., editor, Proceedings of the th Interna-
tional Conference on Intelligent Games and Simulation (GAMEON’), pages –.
EUROSIS-ETI, Ghent University, Ghent, Belgium.

. Bakkes, S. C. J. and Spronck, P. H. M. (). Gathering and utilising domain knowledge
in commercial computer games. In Schobbens, P.-Y., Vanhoof, W., and Schwanen, G.,
editors, Proceedings of the th Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC ), pages –. University of Namur, Namur, Belgium.

. Bakkes, S. C. J., Spronck, P. H. M., and Postma, E. O. (a). Best-response learning of
team behaviour in Quake III. In Aha, D. W., Muñoz-Avila, H., and Van Lent, M., editors,
Proceedings of the IJCAI  Workshop on Reasoning, Representation, and Learning in
Computer Games, pages –. Navy Center for Applied Research in Artificial Intelli-
gence, Washington, DC., USA.

. Bakkes, S. C. J., Spronck, P. H. M., and Van den Herik, H. J. (b). Learning to play as
a team. In Wanders, A., editor, Proceedings of the Learning Solutions  symposium,
pages –. SNN Adaptive Intelligence, Nijmegen, e Netherlands.

. Bakkes, S. C. J. and Spronck, P. H.M. (). Symbiotic learning in commercial computer
games. In Mehdi, Q. H., Gough, N. E., and Natkin, S., editors, Proceedings of the th In-
ternational Conference on Computer Games (CGAMES ), pages –. University
of Wolverhampton, Wolverhampton, UK.

SIKS dissertation series



 Johan van den Akker (CWI) DEGAS - An Active,
Temporal Database of Autonomous Objects

 Floris Wiesman (UM) Information Retrieval by
Graphically Browsing Meta-Information

 Ans Steuten (TUD) A Contribution to the Linguis-
tic Analysis of Business Conversations within the
Language/Action Perspective

 Dennis Breuker (UM)Memory versus Search inGa-
mes

 Eduard W. Oskamp (RUL) Computerondersteu-
ning bij Straftoemeting



 Mark Sloof (VU) Physiology of Quality ChangeMo-
delling; Automated Modelling of Quality Change of
Agricultural Products

 Rob Potharst (EUR) Classification using Decision
Trees and Neural Nets

 Don Beal (UM) e Nature of Minimax Search

 Jacques Penders (UM) e Practical Art of Moving
Physical Objects

 Aldo de Moor (KUB) Empowering Communities: A
Method for the Legitimate User-Driven Specifica-
tion of Network Information Systems

 Niek J.E. Wijngaards (VU) Re-Design of Compositi-
onal Systems

 David Spelt (UT) Verification Support for Object
Database Design

 Jacques H.J. Lenting (UM) Informed Gambling:
Conception and Analysis of a Multi-Agent Mecha-
nism for Discrete Reallocation



 Frank Niessink (VU) Perspectives on Improving
Software Maintenance

 Koen Holtman (TU/e) Prototyping of CMS Storage
Management

 Carolien M.T. Metselaar (UvA) Sociaal-
organisatorische Gevolgen van Kennistechnologie;
een Procesbenadering en Actorperspectief

 Geert de Haan (VU) ETAG, A Formal Model of
Competence Knowledge for User Interface Design

 Ruud van der Pol (UM) Knowledge-Based Query
Formulation in Information Retrieval

 Rogier van Eijk (UU) Programming Languages for
Agent Communication

 Niels Peek (UU) Decision-eoretic Planning of
Clinical Patient Management

 Veerle Coupé (EUR) Sensitivity Analyis of
Decision-eoretic Networks

 Florian Waas (CWI) Principles of Probabilistic
Query Optimization

 Niels Nes (CWI) Image Database Management Sy-
stemDesign Considerations, Algorithms and Archi-
tecture

 Jonas Karlsson (CWI) Scalable Distributed Data
Structures for Database Management



 Silja Renooij (UU) Qualitative Approaches to
Quantifying Probabilistic Networks

 Koen Hindriks (UU) Agent Programming Langua-
ges: Programming with Mental Models

 Maarten van Someren (UvA) Learning as Problem
Solving

 Evgueni Smirnov (UM) Conjunctive and Disjunc-
tive Version Spaces with Instance-Based Boundary
Sets

 Jacco van Ossenbruggen (VU) Processing Structu-
red Hypermedia: A Matter of Style

 Martijn van Welie (VU) Task-Based User Interface
Design

 Bastiaan Schonhage (VU) Diva: Architectural Per-
spectives on Information Visualization

 Pascal van Eck (VU) A Compositional Semantic
Structure for Multi-Agent Systems Dynamics

Abbreviations. SIKS – Dutch Research School for Information and Knowledge Systems; CWI – Centrum voor
Wiskunde en Informatica, Amsterdam; EUR – Erasmus Universiteit, Rotterdam; KUB – Katholieke Universi-
teit Brabant, Tilburg; KUN – Katholieke Universiteit Nijmegen; OU – Open Universiteit Nederland; RUG –
Rijksuniversiteit Groningen; RUL – Rijksuniversiteit Leiden; RUN – Radboud Universiteit Nijmegen; TUD –
TechnischeUniversiteit Delft; TU/e –TechnischeUniversiteit Eindhoven; UL –Universiteit Leiden; UM–Uni-
versiteit Maastricht; UT –Universiteit Twente; UU –Universiteit Utrecht; UvA –Universiteit van Amsterdam;
UvT – Universiteit van Tilburg; VU – Vrije Universiteit, Amsterdam.

198 SIKS dissertation series

 Pieter Jan ’t Hoen (RUL) Towards Distributed De-
velopment of Large Object-Oriented Models, Views
of Packages as Classes

 Maarten Sierhuis (UvA) Modeling and Simulating
Work Practice BRAHMS: a Multiagent Modeling
and Simulation Language for Work Practice Ana-
lysis and Design

 TomM. van Engers (VU) Knowledge Management:
e Role of Mental Models in Business Systems De-
sign



 Nico Lassing (VU)Architecture-LevelModifiability
Analysis

 Roelof van Zwol (UT) Modelling and Searching
Web-based Document Collections

 Henk Ernst Blok (UT) Database Optimization As-
pects for Information Retrieval

 Juan Roberto Castelo Valdueza (UU) e Discrete
Acyclic Digraph Markov Model in Data Mining

 Radu Serban (VU) e Private Cyberspace Mode-
ling Electronic Environments Inhabited by Privacy-
Concerned Agents

 Laurens Mommers (UL) Applied Legal Epistemo-
logy; Building a Knowledge-based Ontology of the
Legal Domain

 Peter Boncz (CWI) Monet: A Next-Generation
DBMS Kernel For Query-Intensive Applications

 Jaap Gordijn (VU) Value Based Requirements En-
gineering: Exploring Innovative E-Commerce Ideas

 Willem-Jan van den Heuvel (KUB) Integrating Mo-
dern Business Applications with Objectified Legacy
Systems

 Brian Sheppard (UM) Towards Perfect Play of
Scrabble

 Wouter C.A. Wijngaards (VU) Agent Based Mo-
delling of Dynamics: Biological and Organisational
Applications

 Albrecht Schmidt (UvA) Processing XML in Data-
base Systems

 Hongjing Wu (TU/e) A Reference Architecture for
Adaptive Hypermedia Applications

 Wieke de Vries (UU) Agent Interaction: Abstract
Approaches to Modelling, Programming and Veri-
fying Multi-Agent Systems

 Rik Eshuis (UT) Semantics and Verification of
UML Activity Diagrams for Workflow Modelling

 Pieter van Langen (VU) e Anatomy of Design:
Foundations, Models and Applications

 Stefan Manegold (UvA) Understanding, Modeling,
and Improving Main-Memory Database Perfor-
mance



 Heiner Stuckenschmidt (VU) Ontology-Based In-
formation Sharing in Weakly Structured Environ-
ments

 Jan Broersen (VU) Modal Action Logics for Reaso-
ning About Reactive Systems

 Martijn Schuemie (TUD)Human-Computer Inter-
action and Presence in Virtual Reality Exposure
erapy

 Milan Petkovic (UT) Content-Based Video Retrie-
val Supported by Database Technology

 Jos Lehmann (UvA) Causation in Artificial Intelli-
gence and Law – A Modelling Approach

 Boris van Schooten (UT) Development and Speci-
fication of Virtual Environments

 Machiel Jansen (UvA) Formal Explorations of
Knowledge Intensive Tasks

 Yong-Ping Ran (UM) Repair-Based Scheduling
 Rens Kortmann (UM) e Resolution of Visually

Guided Behaviour
 Andreas Lincke (UT) Electronic Business Negotia-

tion: Some Experimental Studies on the Interaction
between Medium, Innovation Context and Cult

 Simon Keizer (UT) Reasoning under Uncertainty
in Natural Language Dialogue using Bayesian Net-
works

 Roeland Ordelman (UT)Dutch Speech Recognition
in Multimedia Information Retrieval

 Jeroen Donkers (UM) Nosce Hostem – Searching
with Opponent Models

 Stijn Hoppenbrouwers (KUN) Freezing Language:
Conceptualisation Processes across ICT-Supported
Organisations

 Mathijs de Weerdt (TUD) Plan Merging in Multi-
Agent Systems

 MenzoWindhouwer (CWI) Feature Grammar Sys-
tems - Incremental Maintenance of Indexes to Di-
gital Media Warehouse

 David Jansen (UT) Extensions of Statecharts with
Probability, Time, and Stochastic Timing

 Levente Kocsis (UM) Learning Search Decisions



 Virginia Dignum (UU) A Model for Organizational
Interaction: Based on Agents, Founded in Logic

SIKS dissertation series 199

 Lai Xu (UvT)MonitoringMulti-party Contracts for
E-business

 Perry Groot (VU) A eoretical and Empirical
Analysis of Approximation in Symbolic Problem
Solving

 Chris van Aart (UvA)Organizational Principles for
Multi-Agent Architectures

 Viara Popova (EUR) Knowledge Discovery and Mo-
notonicity

 Bart-Jan Hommes (TUD) e Evaluation of Busi-
ness Process Modeling Techniques

 Elise Boltjes (UM) VoorbeeldIG Onderwijs; Voor-
beeldgestuurd Onderwijs, een Opstap naar Ab-
stract Denken, vooral voor Meisjes

 Joop Verbeek (UM) Politie en de Nieuwe Interna-
tionale Informatiemarkt, Grensregionale Politiële
Gegevensuitwisseling en Digitale Expertise

 Martin Caminada (VU) For the Sake of the Ar-
gument; Explorations into Argument-based Reaso-
ning

 Suzanne Kabel (UvA) Knowledge-rich Indexing of
Learning-objects

 Michel Klein (VU) Change Management for Distri-
buted Ontologies

 e Duy Bui (UT) Creating Emotions and Facial
Expressions for Embodied Agents

 Wojciech Jamroga (UT) Using Multiple Models of
Reality: On Agents who Know how to Play

 Paul Harrenstein (UU) Logic in Conflict. Logical
Explorations in Strategic Equilibrium

 Arno Knobbe (UU) Multi-Relational Data Mining

 Federico Divina (VU) Hybrid Genetic Relational
Search for Inductive Learning

 Mark Winands (UM) Informed Search in Complex
Games

 Vania Bessa Machado (UvA) Supporting the Con-
struction of Qualitative Knowledge Models

 ijsWesterveld (UT)Using generative probabilis-
tic models for multimedia retrieval

 Madelon Evers (Nyenrode) Learning from Design:
facilitating multidisciplinary design teams



 Floor Verdenius (UvA) Methodological Aspects of
Designing Induction-Based Applications

 Erik van der Werf (UM) AI techniques for the game
of Go

 Franc Grootjen (RUN) A Pragmatic Approach to
the Conceptualisation of Language

 NirvanaMeratnia (UT)TowardsDatabase Support
for Moving Object data

 Gabriel Infante-Lopez (UvA) Two-Level Probabi-
listic Grammars for Natural Language Parsing

 Pieter Spronck (UM) Adaptive Game AI
 Flavius Frasincar (TU/e)Hypermedia Presentation

Generation for Semantic Web Information Systems
 Richard Vdovjak (TU/e) A Model-driven Approach

for Building Distributed Ontology-based Web Ap-
plications

 Jeen Broekstra (VU) Storage, Querying and Inferen-
cing for Semantic Web Languages

 Anders Bouwer (UvA)Explaining Behaviour: Using
Qualitative Simulation in Interactive Learning En-
vironments

 Elth Ogston (VU) Agent Based Matchmaking and
Clustering - A Decentralized Approach to Search

 Csaba Boer (EUR) Distributed Simulation in Indu-
stry

 Fred Hamburg (UL) Een Computermodel voor het
Ondersteunen van Euthanasiebeslissingen

 Borys Omelayenko (VU) Web-Service configura-
tion on the SemanticWeb; Exploring how semantics
meets pragmatics

 Tibor Bosse (VU) Analysis of the Dynamics of Cog-
nitive Processes

 Joris Graaumans (UU) Usability of XML Query
Languages

 Boris Shishkov (TUD) Software Specification Based
on Re-usable Business Components

 Danielle Sent (UU) Test-selection strategies for pro-
babilistic networks

 Michel van Dartel (UM) Situated Representation
 Cristina Coteanu (UL) Cyber Consumer Law, State

of the Art and Perspectives
 Wijnand Derks (UT) Improving Concurrency and

Recovery in Database Systems by Exploiting Appli-
cation Semantics



 Samuil Angelov (TU/e) Foundations of BB Elec-
tronic Contracting

 Cristina Chisalita (VU)Contextual issues in the de-
sign and use of information technology in organiza-
tions

 Noor Christoph (UvA) e role of metacognitive
skills in learning to solve problems

200 SIKS dissertation series

 Marta Sabou (VU)BuildingWeb Service Ontologies

 Cees Pierik (UU)Validation Techniques for Object-
Oriented Proof Outlines

 Ziv Baida (VU) Software-aided Service Bundling -
Intelligent Methods & Tools for Graphical Service
Modeling

 Marko Smiljanic (UT)XML schemamatching – ba-
lancing efficiency and effectiveness bymeans of clus-
tering

 Eelco Herder (UT) Forward, Back and Home Again
- Analyzing User Behavior on the Web

 Mohamed Wahdan (UM) Automatic Formulation
of the Auditor’s Opinion

 Ronny Siebes (VU) Semantic Routing in Peer-to-
Peer Systems

 Joeri van Ruth (UT) Flattening Queries over Nested
Data Types

 Bert Bongers (VU) Interactivation - Towards an
e-cology of people, our technological environment,
and the arts

 Henk-Jan Lebbink (UU)Dialogue andDecisionGa-
mes for Information Exchanging Agents

 JohanHoorn (VU) Software Requirements: Update,
Upgrade, Redesign - towards a eory of Require-
ments Change

 Rainer Malik (UU) CONAN: Text Mining in the Bi-
omedical Domain

 Carsten Riggelsen (UU) Approximation Methods
for Efficient Learning of Bayesian Networks

 Stacey Nagata (UU) User Assistance for Multitas-
king with Interruptions on a Mobile Device

 Valentin Zhizhkun (UvA) Graph transformation
for Natural Language Processing

 Birna van Riemsdijk (UU) Cognitive Agent Pro-
gramming: A Semantic Approach

 Marina Velikova (UvT) Monotone models for pre-
diction in data mining

 Bas van Gils (RUN) Aptness on the Web

 Paul de Vrieze (RUN) Fundaments of Adaptive Per-
sonalisation

 Ion Juvina (UU) Development of Cognitive Model
for Navigating on the Web

 Laura Hollink (VU) Semantic Annotation for Re-
trieval of Visual Resources

 Madalina Drugan (UU) Conditional log-likelihood
MDL and Evolutionary MCMC

 Vojkan Mihajlovic (UT) Score Region Algebra: A
Flexible Framework for Structured Information Re-
trieval

 Stefano Bocconi (CWI) Vox Populi: generating vi-
deo documentaries from semantically annotated
media repositories

 Borkur Sigurbjornsson (UvA) Focused Information
Access using XML Element Retrieval



 Kees Leune (UvT) Access Control and Service-
Oriented Architectures

 Wouter Teepe (RUG) Reconciling Information Ex-
change and Confidentiality: A Formal Approach

 Peter Mika (VU) Social Networks and the Semantic
Web

 Jurriaan van Diggelen (UU) Achieving Semantic In-
teroperability in Multi-agent Systems: a dialogue-
based approach

 Bart Schermer (UL) Software Agents, Surveillance,
and the Right to Privacy: a Legislative Framework
for Agent-enabled Surveillance

 Gilad Mishne (UvA) Applied Text Analytics for
Blogs

 Natasa Jovanovic’ (UT) To Whom It May Concern
- Addressee Identification in Face-to-Face Meetings

 Mark Hoogendoorn (VU) Modeling of Change in
Multi-Agent Organizations

 DavidMobach (VU)Agent-BasedMediated Service
Negotiation

 Huib Aldewereld (UU) Autonomy vs. Conformity:
an Institutional Perspective on Norms and Proto-
cols

 Natalia Stash (TU/e) Incorporating Cogniti-
ve/Learning Styles in a General-Purpose Adaptive
Hypermedia System

 Marcel van Gerven (RUN) Bayesian Networks for
Clinical Decision Support: A Rational Approach to
Dynamic Decision-Making under Uncertainty

 Rutger Rienks (UT) Meetings in Smart Environ-
ments; Implications of Progressing Technology

 Niek Bergboer (UM) Context-Based Image Analy-
sis

 Joyca Lacroix (UM) NIM: a Situated Computatio-
nal Memory Model

 Davide Grossi (UU) Designing Invisible Handcuffs.
Formal investigations in Institutions and Organi-
zations for Multi-agent Systems

SIKS dissertation series 201

 eodore Charitos (UU) Reasoning with Dynamic
Networks in Practice

 Bart Orriens (UvT) On the development and ma-
nagement of adaptive business collaborations

 David Levy (UM) Intimate relationships with arti-
ficial partners

 Slinger Jansen (UU) Customer Configuration Up-
dating in a Software Supply Network

 Karianne Vermaas (UU) Fast diffusion and broa-
dening use: A research on residential adoption and
usage of broadband internet in theNetherlands bet-
ween  and 

 Zlatko Zlatev (UT) Goal-oriented design of value
and process models from patterns

 Peter Barna (TU/e) Specification of Application Lo-
gic in Web Information Systems

 Georgina Ramírez Camps (CWI) Structural Featu-
res in XML Retrieval

 Joost Schalken (VU) Empirical Investigations in
Software Process Improvement



 Katalin Boer-Sorbán (EUR) Agent-Based Simula-
tion of Financial Markets: A modular, continuous-
time approach

 Alexei Sharpanskykh (VU) On Computer-Aided
Methods for Modeling and Analysis of Organizati-
ons

 Vera Hollink (UvA) Optimizing hierarchical me-
nus: a usage-based approach

 Ander de Keijzer (UT) Management of Uncertain
Data - towards unattended integration

 BelaMutschler (UT)Modeling and simulating cau-
sal dependencies on process-aware information sys-
tems from a cost perspective

 Arjen Hommersom (RUN) On the Application of
Formal Methods to Clinical Guidelines, an Artifi-
cial Intelligence Perspective

 Peter van Rosmalen (OU) Supporting the tutor in
the design and support of adaptive e-learning

 Janneke Bolt (UU) Bayesian Networks: Aspects of
Approximate Inference

 Christof van Nimwegen (UU) e paradox of the
guided user: assistance can be counter-effective

 Wauter Bosma (UT) Discourse oriented Summari-
zation

 Vera Kartseva (VU)Designing Controls for Network
Organizations: a Value-Based Approach

 Jozsef Farkas (RUN) A Semiotically oriented Cog-
nitive Model of Knowlegde Representation

 Caterina Carraciolo (UvA) Topic Driven Access to
Scientific Handbooks

 Arthur van Bunningen (UT) Context-Aware
Querying; Better Answers with Less Effort

 Martijn van Otterlo (UT)e Logic of Adaptive Be-
havior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in
First-Order Domains

 Henriette van Vugt (VU) Embodied Agents from a
User’s Perspective

 Martin Op’t Land (TUD) Applying Architecture
and Ontology to the Splitting and Allying of Enter-
prises

 Guido de Croon (UM) Adaptive Active Vision
 Henning Rode (UT) From document to entity re-

trieval: improving precision and performance of fo-
cused text search

 Rex Arendsen (UvA) Geen bericht, goed bericht.
Een onderzoek naar de effecten van de introductie
van elektronisch berichtenverkeer met een overheid
op de administratieve lasten van bedrijven

 Krisztian Balog (UvA) People search in the enter-
prise

 Henk Koning (UU) Communication of IT-
architecture

 Stefan Visscher (UU) Bayesian network models for
the management of ventilator-associated pneumo-
nia

 Zharko Aleksovski (VU) Using background know-
ledge in ontology matching

 Geert Jonker (UU) Efficient and Equitable ex-
change in air traffic management plan repair using
spender-signed currency

 Marijn Huijbregts (UT) Segmentation, diarization
and speech transcription: surprise data unraveled

 Hubert Vogten (OU) Design and implementation
strategies for IMS learning design

 Ildiko Flesh (RUN) On the use of independence re-
lations in Bayesian networks

 Dennis Reidsma (UT) Annotations and subjective
machines- Of annotators, embodied agents, users,
and other humans

 Wouter van Atteveldt (VU) Semantic network ana-
lysis: techniques for extracting, representing and
querying media content

 Loes Braun (UM) Pro-active medical information
retrieval

202 SIKS dissertation series

 Trung B. Hui (UT) Toward affective dialogue ma-
nagement using partially observable markov deci-
sion processes

 Frank Terpstra (UvA) Scientific workflow design;
theoretical and practical issues

 Jeroen de Knijf (UU) Studies in Frequent Tree Mi-
ning

 Benjamin Torben-Nielsen (UvT) Dendritic morp-
hology: function shapes structure



 Rasa Jurgelenaite (RUN) Symmetric Causal Inde-
pendence Models

 Willem Robert van Hage (VU) Evaluating
Ontology-Alignment Techniques

 Hans Stol (UvT) A Framework for Evidence-based
Policy Making Using IT

 Josephine Nabukenya (RUN) Improving the Qua-
lity of Organisational Policy Making using Colla-
boration Engineering

 Sietse Overbeek (RUN) Bridging Supply and De-
mand for Knowledge Intensive Tasks - Based on
Knowledge, Cognition, and Quality

 Muhammad Subianto (UU) Understanding Classi-
fication

 Ronald Poppe (UT) Discriminative Vision-Based
Recovery and Recognition of Human Motion

 VolkerNannen (VU)EvolutionaryAgent-Based Po-
licy Analysis in Dynamic Environments

 Benjamin Kanagwa (RUN) Design, Discovery and
Construction of Service-oriented Systems

 Jan Wielemaker (UVA) Logic programming for
knowledge-intensive interactive applications

 Alexander Boer (UVA) Legal eory, Sources of
Law & the Semantic Web

 Peter Massuthe (TU/e, Humboldt-Universtät zu
Berlin) Operating Guidelines for Services

 Steven de Jong (UM) Fairness in Multi-Agent Sys-
tems

 Maksym Korotkiy (VU) From ontology-enabled
services to service-enabled ontologies (making on-
tologies work in e-science with ONTO-SOA)

 Rinke Hoekstra (UVA) Ontology Representation -
Design Patterns and Ontologies that Make Sense

 Fritz Reul (UvT) New Architectures in Computer
Chess

 Laurens van der Maaten (UvT) Feature Extraction
from Visual Data

 Fabian Groffen (CWI) Armada, An Evolving Data-
base System

 Valentin Robu (CWI) Modeling Preferences, Stra-
tegic Reasoning and Collaboration in Agent-
Mediated Electronic Markets

 Bob van der Vecht (UU) Adjustable Autonomy:
Controling Influences on Decision Making

 Stijn Vanderlooy (UM) Ranking and Reliable Clas-
sification

 Pavel Serdyukov (UT) Search For Expertise: Going
beyond direct evidence

 Peter Hofgesang (VU) Modelling Web Usage in a
Changing Environment

 Annerieke Heuvelink (VU) Cognitive Models for
Training Simulations

 Alex van Ballegooij (CWI) RAM: Array Database
Management through Relational Mapping

 FernandoKoch (UU)AnAgent-BasedModel for the
Development of Intelligent Mobile Services

 Christian Glahn (OU) Contextual Support of social
Engagement and Reflection on the Web

 Sander Evers (UT) Sensor Data Management with
Probabilistic Models

 Stanislav Pokraev (UT)Model-Driven Semantic In-
tegration of Service-Oriented Applications

 Marcin Zukowski (CWI) Balancing vectorized
query execution with bandwidth-optimized storage

 Sofiya Katrenko (UVA) A Closer Look at Learning
Relations from Text

 Rik Farenhorst and Remco de Boer (VU) Architec-
tural Knowledge Management: Supporting Archi-
tects and Auditors

 Khiet Truong (UT)How Does Real Affect Affect Af-
fect Recognition In Speech?

 Inge van de Weerd (UU) Advancing in Software
Product Management: An Incremental Method En-
gineering Approach

 Wouter Koelewijn (UL) Privacy en Politiegegevens;
Over geautomatiseerde normatieve informatie-
uitwisseling

 Marco Kalz (OU) Placement Support for Learners
in Learning Networks

 Hendrik Drachsler (OU) Navigation Support for
Learners in Informal Learning Networks

 Riina Vuorikari (OU) Tags and Self-Organisation:
A Metadata Ecology for Learning Resources in a
Multilingual Context

SIKS dissertation series 203

 Christian Stahl (TU/e, Humboldt-Universtät zu
Berlin) Service Substitution – A Behavioral Appro-
ach Based on Petri Nets

 Stephan Raaijmakers (UvT)Multinomial Language
Learning: Investigations into the Geometry of Lan-
guage

 Igor Berezhnyy (UvT) Digital Analysis of Paintings

 Toine Bogers (UvT) Recommender Systems for So-
cial Bookmarking

 Virginia Nunes Leal Franqueira (UT) Finding
Multi-step Attacks in Computer Networks using
Heuristic Search and Mobile Ambients

 Roberto Santana Tapia (UT) Assessing Business-IT
Alignment in Networked Organizations

 Jilles Vreeken (UU) Making Pattern Mining Useful

 Loredana Afanasiev (UvA) Querying XML: Bench-
marks and Recursion



 Matthijs van Leeuwen (UU) Patterns that Matter

 Ingo Wassink (UT) Work flows in Life Science

 Joost Geurts (CWI) A Document Engineering Mo-
del and Processing Framework for Multimedia do-
cuments

 Olga Kulyk (UT) Do You Know What I Know? Si-
tuational Awareness of Co-located Teams in Mul-
tidisplay Environments

 Claudia Hauff (UT) Predicting the Effectiveness of
Queries and Retrieval Systems

 Sander Bakkes (UvT) Rapid Adaptation of Video
Game AI

TiCC Ph.D. series

 Pashiera Barkhuysen. Audiovisual prosody in interaction. Promotores: M.G.J. Swerts, E.J.
Krahmer. Tilburg, October , .

 Ben Torben-Nielsen. Dendritic morphology: Function shapes structure. Promotores: H.J.
van den Herik, E.O. Postma. Co-promotor: K.P. Tuyls. Tilburg, December , .

 Hans Stol.A framework for evidence-based policymaking using IT. Promotor: H.J. van den
Herik. Tilburg, January , .

 Jeroen Geertzen. Act recognition and prediction. Explorations in computational dialogue
modelling. Promotor: H.C. Bunt. Co-promotor: J.M.B. Terken. Tilburg, February , .

 Sander Canisius. Structural prediction for natural language processing: A constraint satis-
faction approach. Promotores: A.P.J. van denBosch,W.M.P.Daelemans. Tilburg, February
, .

 Fritz Reul. New architectures in computer chess. Promotor: H.J. van den Herik. Co-
promotor: J.W.H.M. Uiterwijk. Tilburg, June , .

 Laurens van der Maaten. Feature extraction from visual data. Promotores: E.O. Postma,
H.J. van den Herik. Co-promotor: A.G. Lange. Tilburg, June , .

 Stephan Raaijmakers. Multinomial language learning: Investigations into the geometry of
language. Promotores: W. Daelemans, A.P.J. van den Bosch. Tilburg, December , .

 Igor Berezhnyy. Digital analysis of paintings. Promotores: E.O. Postma, H.J. van den He-
rik. Tilburg, December , .

 Toine Bogers. Recommender systems for social bookmarking. Promotor: A.P.J. van den
Bosch. Tilburg, December , .

 Sander Bakkes. Rapid adaptation of video game AI. Promotor: H.J. van den Herik. Co-
promotor: P.H.M. Spronck. Tilburg, March , .

	front
	middle
	back

