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Abstract

In this paper, we put forward Monte-Carlo Tree Search as a novel, unified framework
to game AI, which doesn’t require an evaluation function. In the framework, randomized
explorations of the search space are used to predict the most promising game actions. We
will demonstrate that Monte-Carlo Tree Search can be applied effectively to (1) classic board-
games, (2) modern board-games, and (3) video games.

1 Introduction
When implementing AI for computer games, the most important factor is the evaluation function that es-
timates the quality of a game state. However, building an adequate evaluation function based on heuristic
knowledge for a non-terminal game state is a domain-dependent and complex task. It probably is one of the
main reasons why game AI in complex game-environments did not achieve a strong level, despite intensive
research and additional use of knowledge-based methods. Monte-Carlo Tree Search (MCTS), a Monte-
Carlo based technique that was first established in 2006, is implemented in top-rated GO programs. These
programs defeated for the first time professional GO players on the 9 × 9 board. The technique can be
generalized easily to modern board-games or video games. In the proposed demonstration, we will illustrate
that MCTS can be applied effectively to (1) classic board-games (such as GO), (2) modern board-games
(such as SETTLERS OF CATAN), and (3) video games (such as the SPRING RTS game).

2 Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) is a best-first search technique which uses stochastic simulations. MCTS
can be applied to any game of finite length. Its basis is the simulation of games where both the AI-controlled
player and its opponents play random moves, or, better, pseudo-random moves. From a single random game
(where every player selects his actions randomly), very little can be learnt. But from simulating a multitude
of random games, a good strategy can be inferred. The algorithm builds and uses a tree of possible future
game states, according to a four-step mechanism. First, selection: while the state is found in the tree, the
next action is chosen according to the statistics stored, in a way that balances between exploitation and
exploration. On the one hand, the task is often to select the game action that leads to the best results so far
(exploitation). On the other hand, less promising actions still have to be explored, due to the uncertainty of
the evaluation (exploration). Several effective strategies can be found in Chaslot et al. [2] and Kocsis and
Szepesvári [3]. Second, expansion: when the game reaches the first state that cannot be found in the tree, the
state is added as a new node. This way, the tree is expanded by one node for each simulated game. Third,
simulation: for the rest of the game, actions are selected at random until the end of the game. Naturally,
the adequate weighting of action selection probabilities has a significant effect on the level of play. If all
legal actions are selected with equal probability, then the strategy played is often weak, and the level of the
Monte-Carlo program is suboptimal. We can use heuristic knowledge to give larger weights to actions that
look more promising. Fourth, backpropagation: after reaching the end of the simulated game, we update
each tree node that was traversed during that game. The visit counts are increased and the win/loss ratio is
modified according to the outcome.
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3 Applications
Classic Board-Games such as two-player deterministic games with perfect information, have been submit-
ted to intensive AI researched. Using the alpha-beta framework, excellent results have been achieved in
the game of CHESS and CHECKERS. However, alpha-beta only works well under two conditions: (1) an
adequate evaluation function exists, and (2) the game has a low branching factor. These two conditions are
lacking in numerous classical board-games (such as GO), modern board-games and video games. As an
alternative to alpha-beta, researchers opted the use of MCTS. It has been shown that MCTS is able to use
highly randomised and weakly simulated games in order to build the most powerful GO-programs to date.
In our demonstration, we will present our program MANGO, which is a top-rated GO program. We will use
graphical tools to demonstrate how MANGO focuses its search on the best moves. We will emphasise that
MCTS without any expert knowledge can still achieve a reasonable level of play.
Modern board-games are becoming more and more popular since their (re)birth in the 1990’s. The game
SETTLERS OF CATAN can be considered an archetypical member of the genre. Modern board-games are of
particular interest to AI researchers because they provide a direct link between classic (two-player, perfect
information) board-games and video games. On the one hand, state variables of most modern board-games
are discrete, and decision making is turn-based. On the other hand, the gameplay in modern board-games
often incorporates randomness, hidden information, multiple players, and a variable initial setup that makes
it impossible to use opening books. In our demonstration, we will show that MCTS outperforms previous
heuristic game AI’s in SETTLERS OF CATAN, and provides a challenging opponent for humans.
Video games present a complex and realistic environment in which game AI is expected to behave realisti-
cally. When implementing AI in video games, arguably the most important factor is the evaluation function
that rates the quality of newly generated game AI. Due to the complex nature of video games, the determina-
tion of an adequate evaluation function is often a difficult task. Still, experiments performed in the SPRING
RTS game have shown that is is possible to generate an evaluation function that rates the quality of game
AI accurately before half of the game is played [1]. However, it is desirable that accurate ratings are estab-
lished even more early, when adaptations to game AI can influence the outcome of a game more effectively.
Monte-Carlo simulations provide a powerful means to accurately rate the quality of newly generated game
AI, even early in the game. In our demonstration, we will show how we abstract the SPRING RTS game for
use of MCTS simulation. The abstraction contains, among others, the position of each unit in the game, and
the game strategy employed by all players. We will emphasis that in complex video-games, effective game
AI may be established by using MCTS, even with highly randomised and weakly simulated games.

4 Conclusions
In this abstract, we put forward Monte-Carlo Tree Search (MCTS) as a novel, unified framework to game AI.
In the framework, randomized explorations of the search space are used to predict the most promising game
actions. We state that MCTS is able to use highly randomised and simulated games in order to established
effective game AI. In demonstrations, we will show that MCTS can be applied effectively to (1) classic
board-games, (2) modern board-games, and (3) video games.
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