
INVOLVING PLAYER EXPERIENCE IN DYNAMICALLY GENERATED
MISSIONS AND GAME SPACES

Sander Bakkes and Joris Dormans
Amsterdam University of Applied Sciences

Computer Science Dept., section Game Development / CREATE-IT Applied Research
P.O. Box 1025, NL-1000 BA Amsterdam, The Netherlands

e-mail: {s.c.j.bakkes, j.dormans}@hva.nl

ABSTRACT

This paper investigates strategies to generate levels for
action-adventure games. This genre relies more strongly
on well-designed levels than rule-driven genres such as
strategy or role-playing games for which procedural level
generation has been successful in the past. The ap-
proach outlined by this paper distinguishes between mis-
sions and spaces as separate structures that need to be
generated in two individual steps. It discusses the merits
of different types of generative grammars for each indi-
vidual step in the process. Notably, the approach ac-
knowledges that the online generation of levels needs to
be tailored strictly to the actual experience of a player.
Therefore, the approach incorporates techniques to es-
tablish and exploit player models in actual play.

INTRODUCTION

In the domain of video games, procedurally generated
content is considered to be of great importance to the
computer-game development in the present and in the
future; both offline, for making the game development
process more efficient (design of content such as envi-
ronments and animations now consume a major part of
the development budget for most commercial games),
and online, for enabling new types of games based on
player-adapted content [1]. In fact, games with proce-
durally generated content have been around for some
time, though in a severely limited form.

The classic example of this type of game is Rogue, an
old Dungeons & Dragons style ASCII dungeon-crawling
game which levels are generated every time the player
starts a new game. The typical approach of these games
can be classified as a brute-force random algorithm that
is tailored to the purpose of generating level structures
that function for the type of game. Although these al-
gorithms have a proven track-record for the creation of
(relatively uncomplicated) rogue-like games, the game-
play their output supports is rather limited.

What is more, Kate Compton and Michael Mateas point
out that generating levels for a generally relatively com-
plex action platform game is more difficult as level de-
sign is a far more critical aspect of that type of game

[2]. Action-adventures rely on level design principles
that result in enjoyable exploration, flow and narrative
structure, too. As it turns out, these principles are dif-
ficult to implement with the algorithms commonly en-
countered in rogue-like games. The algorithms generally
cannot express these principles as they mostly operate
on a larger scale than the scale of individual dungeon
rooms and corridors. In order to generate game levels
informed by such principles we need to turn to a method
that does operate on the scale on which these principles
reside. This method is the use of generative grammars.
However, even with the use of generative grammars, gen-
erating good levels is still very hard. Levels often have a
random feel to it and tend to lack overall structure. To
search simply for a single generative grammar to tackle
all these problems is not sufficient. Well-designed lev-
els generally have two, instead of one structures; a level
generally consists of a mission and a space.

This paper suggests that both missions and spaces
are best generated separately using types of generative
grammars that suit the particular needs of each struc-
ture. As outlined in the final sections of this paper,
the route presented here is to generate missions first
and subsequently generate spaces to accommodate these
missions. We acknowledge that the online generation of
levels needs to be tailored strictly to the actual experi-
ence of a player. Therefore, the approach incorporates
techniques to establish and exploit player models in ac-
tual play.

MISSIONS AND SPACES

In a detailed study of the level design of the Forest Tem-
ple level of The Legend of Zelda: The Twilight Princess,
conducted by the authors and described in more detail
elsewhere [3], two different structures emerge that both
describe the level. First, there is the geometrical lay-out
of the level: the space. Level space can be abstracted
into a network of nodes and edges to represent rooms
and their connections. Second, there is the series of
tasks the player needs to complete in order to get to
the end of the level: the actual mission. The mission
can be represented by a directed graph indicating which
tasks are made available by the completion of a pre-

ceding task. The mission dictates a logical order for the
completion of the tasks, which is independent of the geo-
metric lay-out. As can been seen in Figure 1, the mission
can be mapped to the game space. In this case certain
parts of the space and the mission are isomorphic. In
particular, in the first section of the level mission and
space correspond rather closely. Isomorphisms between
mission and space is frequently encountered in many
games, but the differences between the two structures
are often just as important.
Level space accommodates the mission and the mission
is mapped onto the space, but otherwise the two are
independent of each other. The same mission can be
mapped to many different spaces, and one space can
support multiple different missions. The principles that
govern the design of both structures also differ. A lin-
ear mission, in which all tasks can only be completed in
a single, fixed order, can be mapped onto a non-linear
spatial configuration. Likewise, a non-linear mission fea-
turing many parallel challenges and alternative options,
can be mapped on to a strictly linear space, resulting in
the player having to travel back and forth a lot.
Some qualities of a level can ultimately be attributed to
its mission while others are a function of its space. For
example, in Zelda levels, and indeed in many Nintendo
games, it is a common strategy to gradually train the
player in the available moves and techniques. In addi-
tion, numerous missions follow a Hollywood-like struc-
ture, that can be attributed to Joseph Campbell’s mon-
omyth (cf. [4]).
The spatial qualities of the Forest Temple are distinct.
Its basic layout follows a hub-and-spoke layout that pro-
vides easy access to many parts of the temple. The
boomerang acts as key to many locks that can be en-
countered right from the beginning. Once it is obtained
extra rooms in the temple are unlocked for the player
to explore, a structure frequently found in adventure
games [5].

GENERATIVE GRAMMARS

Before detailing our approach to dynamically generated
missions and game spaces, we introduce the concept of
generative grammars, and provide a discussion on the
advantages and applications of generative grammars.
Concept. Generative grammars originate in linguistics
where they are used as a model to describe sets of lin-
guistic phrases. In theory, a generative grammar can be
created that is able to produce all correct phrases of a
language. A generative grammar typically consists of an
alphabet and a set of rules. The alphabet is a set of sym-
bols the grammar works with. The rules employ rewrite
operations: a rule specifies what symbol can be replaced
by what other symbols to form a new string. For exam-
ple: a rule in a grammar might specify that in a string
of symbols, symbol ‘S’ can be replaced by the symbols
‘ab’. This rule would normally be written down as ‘S →

ab’. Generative grammars typically replace the symbol
(or group of symbols) on the left-hand side of the arrow
with a symbol or group of symbols on the right-hand
side. Therefore, it is common to refer to the symbols to
be replaced as the left-hand side of the rule and to refer
to the new symbols as the right-hand side. Some sym-
bols in the alphabet can never be replaced because there
are no rules that specify their replacement. These sym-
bols are called terminals and the convention is to rep-
resent them with lowercase characters. The symbols ‘a’
and ‘b’ in the last example are terminals. Non-terminals
have rules that specify their replacement and are con-
ventionally represented by uppercase characters. The
symbol ‘S’ from the previous rules is an example. For
a grammar that describes natural language sentences,
terminal symbols might be words, whereas non-terminal
symbols represent functional word groups, such as noun-
phrases and verb-phrases. The denominator ‘S’ is often
used for a grammar’s start symbol. A generative gram-
mar needs at least one symbol to replace; it cannot start
from nothing. Therefore, a complete generative gram-
mar also specifies a start symbol.
Grammars like these are used in computer science to
create language and code parsers; they are designed to
analyse and classify language. Moreover, grammars are
suited for predicting, and generating automatically lan-
guage phrases. We utilise grammers for this latter pur-
pose. It is easy to see that simple rules can produce
quite interesting results especially when the rules allow
for recursion: when the rules produce non-terminal sym-
bols that can directly or indirectly result in the applica-
tion of the same rule recursively. The rule ‘S → abS’ is
an example of a recursive rule and will produce endless
strings of ab’s. The rule ‘S → aSb’ is another example
and generates a string of a’s followed by an equal num-
ber of b’s. Generative grammars developed for natural
languages are capable of capturing concepts that tran-
scend the level of individual words, such as argument
construction and rhetoric, which suggests that genera-
tive grammars developed for games should be able to
capture higher level design principles that lead to inter-
esting levels at both micro and macro scopes.
Generative grammars can be used to describe games
when the alphabet of the grammar consists of a series
of symbols to represent game specific concepts, and the
rules define sensible ways in which these concepts can
be combined to create well-formed levels. A grammar
that describes the possible levels of an adventure game,
for example, might include the terminal symbols ‘key’,
‘lock’, ‘room’, ‘monster’, ‘treasure’. While the rules for
that grammar might include:

1. Dungeon → Obstacle + treasure
2. Obstacle → key + Obstacle + lock + Obstacle
3. Obstacle → monster + Obstacle
4. Obstacle → room

In this case, when multiple rules specify possible replace-
ments for the same non-terminal symbol, only one rule
will be selected. This can be done (pseudo-)randomly.

Mission Space

Figure 1: Mission and space in the Forest Temple Level of The Legend of Zelda: The Twilight Princess.

The rules can generate a wide variety of strings includ-
ing:

1. key + monster + room + lock + monster + room + treasure
2. key + monster + key + room + lock + monster + room +

lock + room + treasure
3. room + treasure
4. monster + monster + monster + monster + room + treasure

The strings produced by the grammar discussed above
are not all suited for a game level. For instance, string
3 is too short (and uninteresting) even in the limited
example above. The problem stems not from generative
grammars as such, but from quality of the rules that
are used in the example. In fact, generative grammar
can easily counter these problems by creating rules that
capture level design principles better, such as:

1. Dungeon → Obstacle + Obstacle + Obstacle + Obstacle +
treasure

2. Dungeon → Threshold Guardian + Obstacle + Mini-Boss +
reward + Obstacle + Level-Boss + treasure.

Where rule 1 incorporates the idea that a dungeon needs
to have a minimal length to be interesting at all, and rule
2 directly incorporates a three act story structure like
the one described for Forest Temple level of Zelda: The
Twilight Princess above.
Advantages and applications. Generative gram-
mars can be used in different ways to produce content

for games. Game experts and designers can produce
a grammar to generate content for a particular game.
Drafting such a grammar would by no means be an
easy task, but the initial effort vastly outweighs the ease
by which new content can be generated or adjusted.
Furthermore, grammars and procedurally content can
be used to aid the designer by automating some, but
not all, design tasks. This approach was taken by Epic
Games for the generation of buildings and large urban
landscapes. It proved to be very versatile as it allowed
designers to quickly regenerate previous sections with
the same constraints but with new rule sets without
having to redo a whole section by hand [6]. Finally,
it would be possible to grow grammars using evolution-
ary algorithms that select successful content from a test
environment. The grammars presented in this paper
were all drafted using the first method. Evolutionary
grammars, although a tantalizing concept, are beyond
the scope of the material presented here. Relevant ap-
plications of generative grammars can also be found in
Lindermayer Systems (L-Systems), for instance for the
procedural generation of city models [7].

Figure 3: Example of a generated mission, based on the
rules given in Figure 2.

GRAPH GRAMMAR TO GENERATE MIS-
SIONS

Graph grammars are a specialized form of genera-
tive grammars that produce graphs consisting of edges
and nodes, instead of producing strings. In relation
with level generation, graph grammars are discussed by
David Adams in his 2002 thesis Automatic Generation
of Dungeons for Computer Games [8]. In a graph gram-
mar, one or several nodes and interconnecting edges can
be replaced by a new structure of nodes and edges. For
examples we refer the reader to [3].

Graph grammars are well suited to generate missions,
as missions are best expressed as nonlinear graphs. It
would need an alphabet that consists of different tasks,
including challenges and rewards. Figure 2 proposes sev-
eral rules to generate a mission structured similarly as
the mission of the forest temple. Figure 3 shows sample
output of the graph grammar. We note that this gram-
mar includes two types of edges, represented by single
arrows and double arrows; different types of edges is a
feature that can be found in other graph grammars. In
this case, the double edges indicate a tight coupling be-
tween the subordinate node and its super-ordinate: this
means that the subordinate must be placed behind the
superordinate in the generated space. It is specific to
the implementation described in this paper. A normal
edge represents a loose coupling and indicates that the
subordinate can be placed anywhere. This information
is very important for the space generation algorithm (see
section Generating Space from Mission).

SHAPE GRAMMAR TO GENERATE SPACE

Shape grammars are most useful to generate space.
Shape grammars have been around since the early 1970s
after they were first described by George Stiny and
James Gips [9]. Shape grammars shapes are replaced
by new shapes following rewrite rules similar to those of
generative grammar and graph grammar. Special mark-
ers are used to identify starting points and to help ori-
entate (and sometimes scale) the new shapes.

For example, imagine a shape grammar, which alpha-

Figure 4: Shape grammar a) alphabet, b) rules, and c)
output.

Figure 5: Recursive shape rules and its output.

bet consists of three symbols: ‘a wall’, ‘open space’ and
a ‘connection’ (see Figure 4a). In this grammar only
the ‘connection’ is a non-terminal symbol, which has a
square marker with a triangle indicating its orientation.
The grey marker on the right-hand side of a shape gram-
mar rule as represented here, indicates where the orig-
inal shape was, and what its orientation was. We can
design rules that determine that a connection can be re-
placed by a wall (effectively closing the connection), a
short piece of corridor, or a T-fork (see Figure 4b). The
construction depicted in Figure 4c is a possible output
of these rules, provided that the start symbol also was a
connection, and given that at every iteration a random
connection was selected to be replaced.
Shape grammars, like any generative grammar can in-
clude recursion. Recursion is a good way to introduce
more variation in the resulting shapes. An interesting
possibility is that hereby it provides shapes to grow in a
certain direction. In this case the implementation of the
grammar should allow the right-hand side to be resized
to match the size of the growing shape. For instance,
the rules in Figure 5 are recursive and the shapes these
rules produces will have a more natural (fractal) feel.

GENERATING SPACE FROM MISSION

In order to use a shape grammar to generate a space
from a generated mission a few adjustments need to be
made to the shape grammar. The terminal symbols in

Figure 2: Example of rules to generate a mission.

the mission need to function as building instructions for
the shape grammar. To achieve this, each rule in the
shape grammar is associated with a terminal symbol
form in the mission grammar. The prototype that im-
plements the shape grammar first finds the next symbol
in the mission, looks for rules that implement that sym-
bol, selects one pseudo-randomly based on their relative
weight, then looks for possible locations where the rule
could be applied, and finally selects one location pseudo-
randomly based on their relative fitness (one location
might be more suitable than another).1 The algorithm
stores a reference to the mission symbol for which each
element was generated, allowing the algorithm to imple-
ment the tight coupling as dictated by the mission. This
prevents the algorithm from placing keys and items at
random locations instead of behind, e.g., tests or locks
as specified by the mission. The shape grammar is fur-
ther extended by dynamic parameters that influence the
rule selection. These parameters are used to create pro-
gressive difficulty or to shift between different ‘registers’.
For example the grammar can increase the chance of
selecting rules with more difficult obstacles with every
step, and switch from a register that causes it to build
many traps to a register that causes it to include many
monsters.
In the prototype application supporting this research,

1The prototype in which we incorporate the ideas proposed
in this paper, is available online, at http://www.jorisdormans.nl/
dungeoncrawl

Figure 6: Shape grammar rules to generate missions.

rules can have commands associated with them. These
commands are executed either before or after the appli-
cation of a rule. These commands, among other func-
tions, facilitate dynamic rule weights and progressive
difficulty.
Once the complete mission is accounted for, the shape
grammar will continue to iterate until all non-terminals
are replaced with terminal symbols using a set of rules
designed to finalize the space (or, alternatively, to grow
some additional branches). Figure 6 lists several rules
for a shape grammar constructed in this way. Figure 7
illustrates a few iterations in the construction of a level
based on the first part of the mission presented in Fig-
ure 3 above.
In practise, it is not be very difficult to generate maps
that can accommodate multiple missions. Missions can
be blended, with the generator alternating between mis-
sions when selecting the next task to accommodate on

Figure 7: Space generation using the rules from Figure 6 and part of the mission from Figure 3 (depicted in the
lower-right), over four iterations.

the map. Alternatively, a second mission is used as
building instructions after the first mission has been
completely accounted for.

ESTABLISHING PLAYER MODELS

The generation techniques discussed in this paper can
also be employed to generate (or adapt) levels during
play, allowing for the opportunity to let behaviour of the
player impact the generation. To this end, techniques
for player modelling need to be incorporated.
Player modelling is an important research area in game
playing. It concerns establishing models of the player
(discussed in this section), and exploiting the models in
actual play (discussed in the section that follows). In
general, a player model is an abstracted description of a
player or of a player’s behaviour in a game. In the case
the models concern not the human player, but instead
an opponent player, we speak of ‘opponent modelling’.
The goal of opponent modelling is to raise the playing
strength of the (computer-controlled) player by allowing
it to adapt to its opponent and exploit his weaknesses
[10]. On the other hand, the goal of player modelling
generally is to steer the game towards a predictably
high player satisfaction [11], on the basis of modelled
behaviour of the human player.
Player modelling is of increasing importance in modern
video games [12]. Houlette [13] discussed the challenges
of player modelling in video-game environments, and
suggested some possible implementations of player mod-
elling. A challenge for player modelling in video games

is that models of the player have to be established (1) in
game environments that generally are relatively realistic
and relatively complex, (2) with typically little time for
observation, and (3) often with only partial observabil-
ity of the environment. Once player models are estab-
lished, classification of the player has to be performed in
real time. As by approximation only twenty percent of
computing resources are available to the game AI [14],
only computationally inexpensive approaches to player
modelling are suitable for incorporation in the game.
For the domain of modern video games, we deem three
approaches applicable to player modelling, namely (1)
action modelling, (2) preference modelling, and (3)
player profiling.
Action modelling. In video games, a common ap-
proach to establishing models of the player is by mod-
elling the actions of the player [15]. It has been shown
that it is possible to create a model of the actions that
players tend to take in particular game situations [13].
Although such models are generally quite useful, the
actual action that a player takes in a particular game
situation will depend not only on the situation but also
on the player’s overall game preferences (e.g., adopt-
ing a particular strategy). For instance, in one play of
the game a player may want to win by purely military
means whereas in another they may decide to aim for
cultural dominance. In general, a player’s preference is
not easily determined on the basis of only the current
game situation, and hence purely action-based models
tend to be of limited applicability [15]. What is more,
the interest of game developers generally goes out to de-

termining a player’s actual game experience, which, by
implication, is even less easily determined solely on the
basis of action-based models.
Preference modelling. An alternative, more ad-
vanced approach is to model the preferences of players,
instead of the actions resulting from those preferences.
This preference-based approach is viable [15] and iden-
tifies the model of a player by analysing the player’s
choices in predefined game situation. In the preference-
based approach, player modelling can be seen as a clas-
sification problem, where a player is classified as one of
a number of available models based on data that is col-
lected during the game. Behaviour of related game AI
is established based on the classification of the player.
Modelling of preferences may be viewed as similar to ap-
proaches that regard known player models (1) as stereo-
types, and (2) as an abstraction of observations [16].
As a means to generalise over observed game actions, a
preference-based approach may be of interest to game
developers.
Player profiling. A recent development with regard
to player modelling, is to establish automatically psy-
chologically verified player profiles. Player profiling has
gathered substantial research interest (cf., e.g., [1]).
Van Lankveld [17] states that the major differences be-
tween player modelling (by means of action modelling,
or preference modelling) and player profiling, lie in the
features that are modelled. That is, player modelling
generally attempts to model the player’s playing style
(e.g., playing defensively), while player profiling at-
tempts to model traits of the player’s personality (e.g.,
extraversion). The models produced by player profil-
ing are readily applicable in any situation where con-
ventional personality models can be used. In addition,
player profiling is supported by a large body of psycho-
logical knowledge.

EXPLOITING PLAYER MODELS

Here, we propose three approaches for exploiting player
models in the context of generative grammars, namely
for (1) space adaptation, (2) mission adaptation, and
(3) difficulty scaling.
Space adaptation. A natural starting point for ex-
ploiting player models, is to allow the space in which
the game is played to grow in response to the actual
behaviour of the player. Firstly, after observing the
player for some time, features within the established
player model may indicate that it is interesting to trans-
form (gradually) the game surroundings. For instance,
from open to confined spaces, from linear to more or-
ganic environments, and from easily maneuverable cor-
ridors to intricate mazes. Secondly, varied gameplay
may be provided by also allowing events that take place
within certain game spaces (e.g., particular rooms) to re-
spond to the player’s previous behaviour. For instance,
if the player already has encountered and fought many

monsters, the rules that would generate more monsters
might decrease in weight while rules that would gener-
ate obstacles of a different type might increase in weight.
Or, inversely, when the player model indicate that the
player enjoys combating monsters (for example because
he goes after every monster he can find), the game may
confront him with more and tougher creatures. The
possibilities of a feedback loop between the actual per-
formance of the player and the online generation of the
game, are many.
Mission adaptation. An interesting alternative to
space adaptation, is to allow the game’s mission to grow
in response to the actual behaviour of the player. A
strategy in this regard, which we regard as promising,
would be to generate a mission that still has some non-
terminals in its structure before constructing the space.
The replacement of these non-terminals should occur
during play, and should be informed by the performance
of the player directly or indirectly. The space could ei-
ther grow in response to the changes in the mission, or
already have accommodated all possibilities. This could
quite literally lead to an implementation of an inter-
active structure that Marie-Laure Ryan calls a fractal
story; where a story keeps offering more and more de-
tail as the player turns his attention to certain parts of
the story [18].
Difficulty scaling. Player models may potentially be
applied to adapt automatically the challenge that a
game poses to the skills of a human player. This is called
difficulty scaling [19], or alternatively, challenge balanc-
ing [20]. When applied to game dynamics, difficulty
scaling aims usually at achieving a “balanced game”,
i.e., a game wherein the human player is neither chal-
lenged too little, nor challenged too much.
In most games, the only implemented means of difficulty
scaling is typically provided by a difficulty setting, i.e.,
a discrete parameter that determines how difficult the
game will be. The purpose of a difficulty setting is to
allow both novice and experienced players to enjoy the
appropriate challenge that the game offers. Usually the
parameter affects plain in-game properties of the game
opponents, such as their physical strength. Only in ex-
ceptional cases the parameter influences the strategy of
the opponents. Consequently, even on a “hard” diffi-
culty setting, opponents may exhibit inferior behaviour,
despite their, for instance, high physical strength. Be-
cause the challenge provided by a game is typically mul-
tifaceted, it is tough for the player to estimate reliably
the particular difficulty level that is appropriate for him-
self. Furthermore, generally only a limited set of discrete
difficulty settings is available (e.g., easy, normal, and
hard). This entails that the available difficulty settings
are not fine-tuned to be appropriate for each player.
In recent years, researchers have developed advanced
techniques for difficulty scaling of games. Demasi and
Cruz [21] used coevolutionary algorithms to train game
characters that best fit the challenge level of a human

player. Hunicke and Chapman [22] explored difficulty
scaling by controlling the game environment (i.e., con-
trolling the number of weapons and power-ups avail-
able to a player). Spronck et al. [19] investigated three
methods to adapt the difficulty of a game by adjusting
automatically weights assigned to possible game strate-
gies. In related work, Yannakakis and Hallam [23] pro-
vided a qualitative and quantitative method for measur-
ing player entertainment in real time.
The proposed mission and space grammars combined
with player models offer a straightforward means to diffi-
culty scaling. Generally, we may prefer to use the gram-
mars for the purpose of generating the most challenging
game environment possible. Analogously, the grammars
can be applied for the purpose of obtaining (and main-
taining) a predefined target in the provided challenge.
For instance, the grammars could exploit information of
the established player models, to generate dynamically
an easily maneuverable environment with appropriately
few powerful opponents, instead of a complex environ-
ment with frustratingly many powerful opponents.

CONCLUSIONS

The levels of action adventure games, and numerous
other games, are double structures consisting of both
a space and a mission. When generating levels for this
genre procedurally, it is best to break down the gener-
ation process in two steps. Generative graph grammars
are suited to generate missions. They are capable of
generating non-linear structures which for games of ex-
ploration are preferred over linear structures. At the
same time they can also capture the larger structures
required for a well-formed game experience. Once a mis-
sion is generated an extended form of shape grammar
can be used to grow a space that can accommodate the
generated mission. This requires some modifications to
the common implementation of shape grammars. The
most important modification is the association of a rule
in the shape grammar with a terminal symbol in the
grammar used to generate the mission.
Breaking down the process into these two steps allows
us to capitalize on the strengths of each type of gram-
mar. With a well-designed set of rules and the clever use
of recursion, this method can be employed to generate
interesting and varied levels that are fun to explore and
offer a complete experience. Furthermore, these tech-
niques can be used to generate levels on the fly, allowing
the game to respond to the player behaviour. By means
of establishing and exploiting player models, generative
grammars can be used to scale dynamically the difficulty
level to the player, and adapt the game space and game
mission online, while the game is still being played, to
ensure the game experience is tailored to the individ-
ual player. This opens up opportunities for gaming and
interactive storytelling that hitherto have hardly been
examined.

REFERENCES

[1] Pedersen, C., Togelius, J., Yannakakis, G.: Modeling Player
Experience for Content Creation. IEEE Transactions on
Computational Intelligence and AI in Games 1(2) (2009)
121–133

[2] Compton, K., Mateas, M.: Procedural level design for plat-
form games. In: Proceedings of the AIIDE. (2006)

[3] Dormans, J.: Adventures in level design: generating missions
and spaces for action adventure games. In: Proc. of the 2010
Works. on Proc. Content Generation in Games. (2010) 1–8

[4] Vogler, C.: The writer’s journey: Mythic structure for writ-
ers. Michael Wiese Productions (1998)

[5] Ashmore, C., Nitsche, M.: The Quest in a Generated World.
In: Proc. 2007 DiGRA Conference: Situated Play. (2007)
503–509

[6] Golding, J.: Building blocks: Artist driven procedural build-
ings (2010) Presentation at GDC 10, San Fran., CA.

[7] Parish, Y., Müller, P.: Procedural modeling of cities. In: Pro-
ceedings of the 28th annual conference on Computer graphics
and interactive techniques. (2001) 301–308

[8] Adams, D.: Automatic Generation of Dungeons for Com-
puter Games. University of Sheffield Dissertation (2002)

[9] Stiny, G., Gips, J.: Shape grammars and the generative spec-
ification of painting and sculpture. Information processing 71
(1972) 1460–1465

[10] Carmel, D., Markovitch, S.: Learning models of opponent’s
strategy in game playing. In: Proceedings of AAAI Fall Sym-
posium on Games: Planning and Learning. (1993) 140–147

[11] Van den Herik, H.J., Donkers, H.H.L.M., Spronck, P.H.M.:
Opponent modelling and commercial games. In: Proceedings
of the CIG’05. (2005) 15–25

[12] Fürnkranz, J.: Recent advances in machine learning and
game playing. ÖGAI-Journal 26(2) (2007) 19–28

[13] Houlette, R.: Player modeling for adaptive games. In: AI
Game Programming Wisdom 2. (2004) 557–566

[14] Millington, I.: Artificial Intelligence for Games. Morgan
Kaufmann Publishers, San Francisco, California, USA (2006)

[15] Donkers, H.H.L.M., Spronck, P.H.M.: Preference-based
player modeling. In Rabin, S., ed.: AI Game Programming
Wisdom 3. (2006) 647–659

[16] Denzinger, J., Hamdan, J.: Improving modeling of other
agents using tentative stereotypes and compactification of
observations. In: Proceedings of the IAT 2004. (2004) 106–
112

[17] Lankveld, G., Schreurs, S., Spronck, P.: Psychologically veri-
fied player modelling. In: Proceedings of the GAMEON’2009.
(2009) 12–19

[18] Ryan, M.: Narrative as virtual reality: Immersion and in-
teractivity in literature and electronic media. Johns Hopkins
University Press Baltimore, MD, USA (2001)

[19] Spronck, P.H.M., Sprinkhuizen-Kuyper, I.G., Postma, E.O.:
Difficulty scaling of game AI. In: Proceedings of the
GAMEON’2004. (2004) 33–37

[20] Olesen, J.K., Yannakakis, G.N., Hallam, J.: Real-time chal-
lenge balance in an RTS game using rtNEAT. In: Proceed-
ings of the CIG’08. (2008) 87–94

[21] Demasi, P., Cruz, A.J.de.O.: Online coevolution for action
games. International Journal of Intelligent Games and Sim-
ulation 2(3) (2002) 80–88

[22] Hunicke, R., Chapman, V.: AI for dynamic difficulty adjust-
ment in games. In: AAAI Workshop on Challenges in Game
Artificial Intelligence. (2004) 91–96

[23] Yannakakis, G.N., Hallam, J.: Towards optimizing enter-
tainment in computer games. Applied Artificial Intelligence
21(10) (2007) 933–971

