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a b s t r a c t

In previous work we introduced a novel approach to adaptive game AI that was focussed on the rapid and
reliable adaptation to game circumstances. We named the approach ‘case-based adaptive game AI’. In the
approach, domain knowledge required to adapt to game circumstances is gathered automatically by the
game AI, and is exploited immediately (i.e., without trials and without resource-intensive learning) to
evoke effective behaviour in a controlled manner in online play. In the research discussed in this article
we investigate to what extent incorporating opponent modelling enhances the performance of case-based
adaptive game AI. In our approach, models of the opponent players are generated automatically, on the
basis of observations drawn from a multitude of games. We performed experiments that test the
enhanced approach in an actual, complex RTS game, and observed that the effectiveness of case-based
adaptive game AI increases significantly when opponent modelling is incorporated. From these results
we may conclude that opponent modelling further improves the basis for implementation of case-based
adaptive game AI in commercially available video games.

� 2009 Published by Elsevier B.V.
1. Introduction

Over the last decades, modern video games have become
increasingly realistic with regard to visual and auditory presenta-
tion. However, game AI has not reached a high degree of realism
yet. Game AI is typically based on non-adaptive techniques [1,2].
A major disadvantage of non-adaptive game AI is that once a weak-
ness is discovered, nothing stops the human player from exploiting
the discovery. The disadvantage can be resolved by endowing
game AI with adaptive behaviour, i.e., the ability to learn from
mistakes. Adaptive game AI can be established by using
machine-learning techniques, such as artificial neural networks
or evolutionary algorithms.

In practice, adaptive game AI in video games is seldom imple-
mented because currently it requires numerous trials to learn
effective behaviour (i.e., game adaptation is not rapid). In addition,
game developers are concerned that applying adaptive game AI
may result in uncontrollable and unpredictable behaviour (i.e.,
game adaptation is not reliable). The general goal of our research
is to investigate to what extent it is possible to establish game AI
capable of adapting rapidly and reliably to game circumstances.
To allow rapid and reliable adaptation in games, in previous re-
search we introduced an approach to behavioural adaptation in vi-
deo games that is inspired by the human capability to solve
problems by generalising over previous observations in a restricted
Elsevier B.V.
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problem domain. This approach we named ‘case-based adaptive
game AI’ [3,4]. The present research builds upon the aforemen-
tioned work by incorporating opponent modelling. Thereby we
aim at increasing the effectiveness of case-based adaptive game
AI in adapting rapidly and reliably to game circumstances.

The outline of this article is as follows. To provide context for
the reader, we first provide an extensive overview of opponent
modelling (Section 2). Subsequently, we outline concisely our ap-
proach to establish case-based adaptive game AI (Section 3). Next,
we discuss how we incorporate opponent modelling in the ap-
proach (Section 4). Then, we report on the experiments that inves-
tigate to what extent incorporating opponent modelling enhances
the performance of case-based adaptive game AI (Section 5), and
discuss the experimental results (Section 6). Finally, we provide
conclusions of the present research (Section 7).
2. Opponent modelling

Opponent modelling is an important research area in game
playing. Opponent modelling concerns establishing models of the
opponent player, and utilising the models in actual play. In general,
an opponent model is an abstracted description of a player or of a
player’s behaviour in a game. The goal of opponent modelling is to
improve the capabilities of the artificial player by allowing it to
adapt to its opponent and exploit his weaknesses [5–8]. Even if a
game-theoretical optimal solution to a game is known, a computer
program that has the capability to model its opponent’s behaviour
may obtain a higher reward. A recent example that illustrates the
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importance of opponent modelling, derived from Fürnkranz[9], is
as follows.

Consider, the game of roshambo (also known as rock-paper-
scissors), where if both players play their optimal strategies (i.e.,
randomly select one of their three moves), either player can expect
to win one third of the games (with one third of the games drawn).
However, against an opponent that always plays rock, a player that
is able to adapt his strategy to always playing paper can maximize
his reward, while a player that sticks with the ‘optimal’ random
strategy will still win only one third of the games.

The general concept of modelling the opponent’s strategy is re-
garded as important by many researchers [10–15]. In addition,
researchers state that opponent models are sorely needed to deal
with the complexities of state-of-the-art video games [16,?]. One
of the grand challenges in this line of work are games like poker,
where opponent modelling is crucial to improve over game-theo-
retically optimal play [18].

The remainder of this section is organised as follows. To provide
context for the reader, we first give an overview of opponent mod-
elling in classic games (2.1). Subsequently, we give an overview of
opponent modelling in video games (2.2).

2.1. Opponent modelling in classic games

In classic games, opponent modelling has as its main goal rais-
ing the game results of the own (artificial) player [16]. The objec-
tive is to exploit the opponent’s weaknesses. Better game results
are positively correlated with a higher playing strength. Computer
programs that play classic games generally incorporate search
techniques to find possible game actions by the opponent, of which
a model can be constructed. As a result, the role of opponent mod-
elling in classic games is to guide the search process towards im-
proved results.

In the remainder of this subsection, we provide a concise his-
tory of opponent modelling in classic games (2.1.1), and describe
the state of the industry with regard to incorporating opponent
modelling techniques (2.1.2).

2.1.1. History
In the domain of classic games, opponent modelling is a re-

search topic that was envisaged already a long time ago. Van den
Herik [16] observe that, for instance, in the 1970s chess programs
incorporated a contempt factor, meaning that against a stronger
opponent a draw was accepted even if the player was +0.5 ahead,
and a draw was declined against a weaker opponent even when
the player had a minus score.

The first attempt to opponent modelling in classic games was
taken by Slagle and Dixon [19], who incorporated rudimentary
knowledge of the opponent in the search process. For instance,
such knowledge can concern assumptions on the fallibility of an
opponent [20]; game AI can consider the chance that the opponent
performs a non-rational game action. In related work, Jansen
[21,22] investigated using knowledge about the opponent in
game-tree search.

Research specifically focussed on the topic of opponent-model-
ling search started in 1993. In that year, two research groups, one
in Haifa, Israel and one in the Maastricht, Netherlands, simulta-
neously invented a search method that took knowledge of the
opponent player into account. They both called it: opponent-model
search. In Israel, Carmel and Markovitch [5] investigated in depth
the learning of models of opponent strategies. In The Netherlands,
Iida et al. [6] investigated potential applications of opponent-mod-
el search. An extensive description of the history of opponent mod-
elling is given by Donkers [8].

In the year 1994, Uiterwijk and Van den Herik [23] invented a
search technique to speculate on the fallibility of the opponent
player. In the 2000s, Donkers et al. [7], Donkers [8] defined proba-
bilistic opponent models, that attempted to avoid the pitfalls of
opponent modelling by incorporating the player’s uncertainty
about the opponent’s strategy.

2.1.2. State of the industry
The realisation of most ideas concerning opponent modelling is

still in its infancy. There are three successful instances of actual
implementation, viz. (1) roshambo [24], (2) iterated prisoner’s di-
lemma [25], and (3) poker [26]. Still, there is a wealth of techniques
that are waiting for implementation in actual games [16].

2.2. Opponent modelling in video games

Opponent modelling is of increasing importance in modern vi-
deo games [9]. In video games, opponent modelling has as its main
goal raising the entertainment factor (instead of raising the playing
strength) [16]. In the remainder of this subsection, we subse-
quently describe the role of opponent modelling in video games
(2.2.1), the challenges of opponent modelling in video-game envi-
ronments (2.2.2), approaches applicable for opponent modelling in
video games (2.2.3), and the state of the industry (2.2.4).

2.2.1. Role of opponent modelling
In order to raise the entertainment factor of a video game, game

AI that incorporates opponent modelling may fulfil two roles: (1)
as a companion, and (2) as an opponent. Each role entails distinct
requirements for the game AI. A description of the two roles is gi-
ven next. The description is derived from a review article by Van
den Herik et al. [16], to which we refer the reader for more infor-
mation on the topic.

Companion role : In the companion role, the game AI must
behave according to the expectations of the human player. For
instance, when the human player prefers an inconspicuous
approach to dealing with opponent characters (e.g., by attempt-
ing to maintain undetected), he will not be pleased when the
computer-controlled companions immediately attack every
opponent character that is near. If the companions fail to pre-
dict with a high degree of success what the human player
desires, they will likely annoy the human player, which is det-
rimental for the entertainment value of the game.
Opponent role: In the opponent role, the game AI must be able to
match the playing skills of the human player, and respond ade-
quately to the player’s playing style. This is a difficult task.
Research shows that when the opponent characters play too
weakly a game against the human player, the human player
loses interest in the game [27]. In addition, research shows that
when the opponent characters play too strong a game against
the human player, the human player gets stuck in the game
and will quit playing too [28,29].
2.2.2. Challenges
Houlette [30], Charles and Black [31], Charles et al. [32], and Bo-

hil and Biocca [33] discussed the challenges of opponent modelling
in video-game environments, and suggested possible implementa-
tions of opponent modelling. A challenge for opponent modelling
in video games is that models of the opponent player have to be
established (1) in a relatively realistic and complex game environ-
ment, (2) with typically little time for observation, and (3) often
with only partial observability of the environment.

Once opponent models are established, classification of the
opponent player has to be performed in real time. Other computa-
tions, such as rendering the game graphics, have to be performed
simultaneously. Researchers estimate that generally only 20% of
all computing resources are available to the game AI [34]. Of these
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20%, a large portion will be spent on rudimentary AI behaviour,
such as manoeuvring game characters within the game environ-
ment. This implies that only computationally inexpensive ap-
proaches to opponent modelling are suitable for incorporation in
the game AI.

2.2.3. Applicable approaches
In video games, a common approach to establishing models of

the opponent player is by modelling the actions of the player
[35], for instance, by using n-grams [36]. An alternative approach
is to model the preferences of opponent players, instead of the ac-
tions resulting from those preferences. This preference-based ap-
proach [35] identifies the model of an opponent by analysing the
opponent’s choices in predefined game states.

The opponent model can be either explicit or implicit. An oppo-
nent model is explicit in game AI when a specification of the oppo-
nents attributes exists separately from the decision-making
process. An opponent model is implicit in game AI when the game
AI is fine-tuned to a specific (type of) opponent, without the game
AI actually referring that opponents attributes [16].

In the preference-based approach, opponent modelling can be
seen as a classification problem, where an opponent is classified
as one of a number of available models based on data that is col-
lected during the game. Behaviour of the game AI is established
based on the classification of the opponent. Modelling of prefer-
ences may be viewed as similar to approaches that regard known
opponent models as (1) stereotypes, and (2) as an abstraction of
observations [37]. In the remainder of the chapter, we follow the
preference-based approach.

2.2.4. State of the industry
In recent years there have been several successful implementa-

tions of opponent modelling. For instance, Rohs [38] was able to
model accurately the preferences of opponent players in the game
Civilization IV. Yannakakis [39] investigated the modelling of
opponent players, for the purpose of augmenting player satisfac-
tion, and Sailer et al. [40] incorporated opponent modelling to en-
hance simulation-based planning in RTS games.

Van der Heijden et al. [41] applied opponent modelling to in-
crease the effectiveness of strategies in a simple game mode of
the ORTS game. In the card game MACHIAVELLI, which shares numer-
ous characteristics with modern video games, Bergsma [42] was
successful in establishing and utilising effectively models of the
opponent player. In the game GHOSTS researchers were able to en-
hance the game AI by allowing it to learn the opponent’s playing
style [43,44]. In the game of GUESS IT researchers showed that oppo-
nent modelling could be used to learn effective game strategies
[45]. In the complex SPRING game, Schadd et al. [46] were able to
generate automatically accurate models of the opponent player.

In addition, researchers incorporated techniques to predict se-
quences of user actions [47]; such as the position of opponent play-
ers in first-person shooters [48,49], and in the game WORLD OF

WARCRAFT [50]. Wong et al. [51] investigated player modelling for a
simple 2D shooter game. In the related domain of interactive sto-
rytelling, Thue et al. [52] investigated how models of the opponent
player can be applied to create stories that can be adapted to fit
individual players.
3. Case-based adaptive game AI

In this section we outline concisely our approach to achieving
rapidly and reliably adaptive game AI. The approach was coined
’case-based adaptive game AI’. We first provide background infor-
mation on the topic of adaptive game AI (3.1). Subsequently, we
describe the general design of case-based adaptive game AI (3.2).
Next, we summarise the results obtained with case-based adaptive
game AI that does not incorporate opponent modelling (3.3). A de-
tailed discussion of case-based adaptive game AI is available in
previous work [3,4].

3.1. Adaptive game AI

As modern video games present a complex and realistic envi-
ronment, one would expect characters controlled by game AI in
such an environment to behave realistically (‘human-like’) too.
An important feature of human-like behaviour of game AI is the
ability to adapt to changing circumstances. Game AI endowed with
this ability is called ‘adaptive game AI’, and is typically imple-
mented via machine-learning techniques. Adaptive game AI may
be used to improve the quality of game AI significantly by learning
effective behaviour while the game is in progress. Adaptive game
AI has been successfully applied to uncomplicated video games
[53–55], and to complex video games [56].

To deal with the complexities of video games, in recent years
researchers have sometimes adopted case-based reasoning (CBR)
and case-based planning (CBP) approaches in their work. For in-
stance, Sharma et al. [57] developed an approach for achieving
transfer learning in the MADRTS game, by using a hybrid case-based
reasoning and reinforcement learning algorithm. Aha et al. [58]
developed a retrieval mechanism for tactical plans in the WARGUS

game, that builds upon domain knowledge generated by Ponsen
and Spronck [59]. Ontañón et al. [60] established a framework
for case-based planning on the basis of annotated knowledge
drawn from expert demonstrations in the WARGUS game. Auslander
et al. [61] uses case-based reasoning to allow reinforcement learn-
ing to respond more quickly to changing circumstances in the
UNREAL TOURNAMENT domination game.

Generally, we observe that learning effective behaviour while
the game is in progress (i.e., ‘online’), typically requires such a large
number of learning trials that the process becomes too inefficient
for practical use. It is not uncommon that a game has finished be-
fore any effective behaviour could be established, or that game
characters in a game do not live sufficiently long to benefit from
learning. As a result, it is difficult for players to perceive that game
AI in fact is learning. This renders the benefits of online learning in
video games subjective and unclear [17]. In addition, we observe
that even with advanced approaches to game AI, it often is difficult
to establish effective behaviour in a controlled and predictable
manner. Therefore, the focus of the present research lies on estab-
lishing effective behaviour of game AI in a rapid and reliable
manner.

3.2. Design of the approach

Case-based adaptive game AI is an approach to game AI where
domain knowledge is gathered automatically by the game AI, and
is exploited immediately (i.e., without trials and without re-
source-intensive learning) to evoke effective behaviour. Case-
based adaptive game AI is expected to be particularly successful
in games that have access to the Internet to store and retrieve sam-
ples of gameplay experiences. For instance, in Massive Multiplayer
Online Games (MMOGs), observations from many games played
against many different opponents are available to the game AI.
The approach is illustrated in Fig. 1. It implements a direct feed-
back loop for control of characters operating in the game environ-
ment. The behaviour of a game character is determined by the
game AI. Each game character feeds the game AI with data on its
current situation, and with the observed results of its actions
(see bottom of Fig. 1). The game AI adapts by processing the ob-
served results, and generates actions in response to the character’s
current situation. An adaptation mechanism is incorporated to



Fig. 1. Case-based adaptive game AI (see text for details).
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determine how to adapt the game AI in the best way. For instance,
reinforcement learning may be applied to assign rewards and pen-
alties to certain behaviour exhibited by the game AI.

In Fig. 1, for rapid adaptation we have extended the feedback
loop by (1) explicitly processing observations from the game AI,
and (2) allowing the use of attributes which are not directly ob-
served by the game character (e.g., observations of team-mates).
Inspired by the case-based reasoning (CBR) paradigm, the ap-
proach collects character observations and game-environment
observations, and extracts from those a case base. The case base
contains all observations relevant for the adaptive game AI, with-
out redundancies. The observations are time-stamped and struc-
tured in a standard format for rapid access. To adapt rapidly to
circumstances in the current game, the adaptation process is based
on domain knowledge drawn from observations of a multitude of
games. The domain knowledge gathered in a case base is typically
used to extract models of game behaviour, but can also directly be
exploited to adapt the AI to game circumstances. In our proposal of
case-based adaptive game AI, the case base is used to extract an
evaluation function and opponent models. Subsequently, the eval-
uation function and opponent models are incorporated in an adap-
tation mechanism that directly exploits the gathered cases during
online play.
3.3. Obtained results

In experiments that test case-based adaptive game AI in an ac-
tual Real-Time-Strategy (RTS) game [3,4], we observed that the
adaptive game AI could play a strong game. We noticed that the
case-based adaptive game AI was able to find in the case base strat-
egies that could effectively defeat its opponent AI. As in these
experiments the opponent AI was not able to adapt its behaviour,
the case-based adaptive game AI could exploit its discoveries
indefinitely. Exact results are provided in Section 5. In addition,
we observed that even in play with randomised strategic parame-
ter values, the case-based adaptive game AI was often able to find
effective strategies in the case base, and was thereby able to im-
prove on the established baseline performance. As randomised
play may be considered a simulated way to test the game AI
against previously unobserved opponents, this is a satisfactory
result.

We noted that the final outcome of the game is largely deter-
mined by the strategy that is adopted in the beginning of the game.
This exemplifies the importance of initialising the game AI with
effective behaviour. In order to do so, a player needs to determine
accurately the opponent against whom it will be pitted. Therefore,
in the present research we investigate how our approach to rapidly
and reliably adapt game AI can be improved by incorporating
opponent modelling techniques.
4. Incorporating opponent modelling

This section discusses how opponent modelling may be incor-
porated to enhance the game AI of an actual, complex video game.
To provide context for the reader, we first describe the game envi-
ronment in which we implement case-based adaptive game AI
(4.1). Subsequently, we describe how we implemented the three
main components of case-based adaptive game AI, viz. (1) an eval-
uation function (4.2), (2) an adaptation mechanism (4.3), and (3)
opponent modelling (4.4).

4.1. Game environment

The game environment in which we implement case-based
adaptive game AI, is the complex video game SPRING [62]. SPRING,
illustrated in Fig. 2, is a typical and open-source RTS game, in
which a player needs to gather resources for the construction of
units and buildings. The aim of the game is to use the constructed
units and buildings to defeat an enemy army in a real-time battle.
A SPRING game is won by the player who first destroys the oppo-
nent’s ‘Commander’ unit.

Modern RTS games typically progress through several distinct
phases as players perform research and create new buildings that
provide them with new capabilities. The phase of a game can be
straightforwardly derived from the observed traversal through
the game’s tech tree. A tech tree is a directed graph without cycles
that models the possible paths of research that a player can
take within the game. Traversing the tech tree is (almost) always



Fig. 2. Screenshot of the SPRING game environment. In the screenshot, the base on the top left is being attacked via a narrow cliff passage.
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advantageous, yet there is a cost for doing so in time and game re-
sources. In SPRING, three levels of technology are available. At the
start of the game, a player can only construct Level 1 structures
and Level 1 units. Later in the game, after the player has performed
the required research, advanced structures and units of Level 2 and
Level 3 become available.

4.2. Evaluation function

To exhibit behaviour consistent within the game environment
presented by modern video games, game AI needs the ability to as-
sess the current situation accurately. This requires an appropriate
evaluation function. The high complexity of modern video games
makes the task to generate such an evaluation function for game
AI a difficult one.

In previous research we discussed an approach to generate
automatically an evaluation function for game AI in RTS games
[63]. The approach to generate an evaluation function incorporated
TD (Temporal Difference) learning [64] to learn unit-type weights,
which reflect the actual playing strength of each unit type in the
game. Our evaluation function incorporates a parameters to reflect
the phase of the game (e.g., opening, end game), and two evalua-
tive terms, one term that represents the material strength and an-
other term that represents the Commander safety.

Results of experiments to test the established evaluation func-
tion showed that just before the game’s end, the function is able
to predict correctly the outcome of the game with an accuracy that
approaches 100%. Considering the suddenness in which a SPRING

game may be won (i.e., destroying the Commander unit), this is a
satisfactory result. In addition, experimental results showed that
the evaluation function predicts ultimate wins and losses accu-
rately before half of the game is played. From these results, we con-
cluded that the established evaluation function effectively predicts
the outcome of a SPRING game and that the proposed approach is
suitable for generating evaluation functions for highly complex vi-
deo games, such as RTS games. Therefore, we incorporate the
established evaluation function in the implementation of our
case-based adaptive game AI.

4.3. Adaptation mechanism

In our approach, domain knowledge collected in a case base is
exploited for adapting game AI. To generalise over observations
with the problem domain, the adaptation mechanism incorporates
an offline means to index collected games, and performs an offline
clustering of observations. To ensure that game AI is effective from
the onset of a game, it is initialised with a previously observed, suc-
cessful game strategy. For online strategy selection, a similarity
matching is performed that considers six experimentally deter-
mined features. A detailed description of this procedure is provided
in [3,4].

We define the game strategy as the configuration of parameters
that determine strategic behaviour. The term ‘opponent strategy’ is
used analogous to game strategy, to reflect that it concerns a game
strategy that is employed by the opponent player. In the game AI
that we experiment with, we found 27 parameters that determine
the game strategy of the game AI. The concerning parameters affect
the game AI’s behaviour on a high, strategic level, rather than on a
low, tactical level. For example, the parameter AIRCRAFT_RATE
determines at a high level how often aircraft units should be con-
structed. How exactly the constructed aircraft units should be em-
ployed is decided by lower-level game AI. All 27 parameters are
described in the Appendix.

4.4. Opponent modelling

Here we discuss how we incorporate opponent modelling into
the case-based adaptive game AI; the former being a technique
that enables game AI to establish and utilise models of the oppo-
nent player. In our approach to case-based adaptation of game
AI, opponent models are established automatically, on the basis of
a case base of game observations. Our goal of utilising the oppo-
nent models is to improve the effectiveness of the adaptive game
AI. We first describe how we establish models of opponent players
in the complex SPRING game (4.4.1). Subsequently, we discuss how
we utilise models of the opponent player for the purpose of adapt-
ing AI of the game (4.4.2).

4.4.1. Establishing opponent models
We noted that in our approach to case-based adaptation of

game AI, opponent models are established automatically, on the
basis of game observations gathered in the case base. We establish
models of the opponent players as follows. We first define 10 fea-
tures of an opponent’s high-level strategic behaviour. The features
are selected by the researchers, to reflect their expertise with the
game environment. Naturally, we acknowledge that by manually
defining and selecting the game features we potentially limit the
accuracy of the models. The investigation of further improvements
is considered a topic for future research.

Strategic behaviour, e.g., the opponent’s preference of unit type,
the focus of an opponent’s technological development, the strength
of his economy, and the aggressiveness of the opponent, can gen-
erally be inferred from observing the feature values during actual
play. As SPRING is a typical RTS game, the defined features may be
generalised to similar strategic games. The ten defined features
are given next.



32 S.C.J. Bakkes et al. / Entertainment Computing 1 (2009) 27–37
1. Number of observed k-bot units.
2. Number of observed tank units.
3. Number of observed air units.
4. Number of technologically advanced constructions (i.e., level

2 or higher).
5. Number of metal extractors.
6. Number of solar panels.
7. Number of wind turbines.
8. Time of first attack on one of the metal extractors.
9. Time of first attack on one of the solar panels.

10. Time of first attack on one of the wind turbines.

The first three features express the global strategic preference
of an opponent, which is important in determining placement of
units and constructions. For instance, in the map SmallDivide
(see Fig. 3(a)), the mountain passes can be crossed by k-bot units,
but not by tanks. If the game AI can deduce that the opponent is
not constructing k-bot units, it can safely distribute resources for
a purpose other than defending the mountain passes.

The fourth feature expresses the technological development of a
player. If the game AI can deduce that the opponent is constructing
advanced units, it can respond by also construction such units.

The fifth, sixth and seventh feature express the strength of an
opponent’s economy, and by implication, the strength of the oppo-
nent’s army. If the game AI can deduce that the opponent’s econ-
omy is relatively weak, it can safely focus on increasing the
strength of its own army before launching an attack on the
opponent.

The 8th, 9th and 10th feature express the aggressiveness of the
opponent player. If the game AI can deduce that the opponent fol-
lows an aggressive playing style, which implies that it launches
many relatively small attacks, it can attempt to build defenses to
withstand the small attacks, and in parallel constructing a rela-
tively strong army. The time of the first attack is expressed in terms
of game states that have passed since the game started.

In establishing the opponent models, we consider that we wish
to utilise the models in a relatively early state of playing the game,
when adapting the game AI still has a relatively strong effect on the
final outcome of the game. Therefore, we aim to gather feature data
of observed opponent behaviour in a specific state that is relatively
early in the game, but that is not too early for observing strategic
choices of the opponent player. In our experiments, opponent
models are established after 150 game states of play, which
amounts to approximately 10 min of real-time play. Based on the
feature data gathered after observing numerous games, opponent
models are generated by clustering the feature data via the stan-
dard k-means clustering algorithm [65]. To determine automati-
cally the difference in opponent behaviour expressed by the
feature data, the Euclidean distance measure is incorporated in
the applied clustering algorithm.
Fig. 3. The three maps that wer
4.4.2. Utilising opponent models
We utilise models of the opponent player for the purpose of

adapting AI of the SPRING game. The established opponent models
are utilised as follows. We extend the offline processing phase of
case-based adaptive game AI, by labelling each game in the case
base with information about the opponent that the game AI was
pitted against. This process is performed by a classification algo-
rithm, which classifies the game AI’s opponent on the basis of ob-
served feature data of the concerning game. As we established
opponent models by a clustering of feature data, the classification
of an opponent is straightforward; namely by calculating the near-
est neighbouring cluster of opponents for the given gameplay sam-
ple. The classification of the opponent player is utilised for (1)
initialisation of game AI, and (2) online strategy selection in actual
play. This is discussed below.

1. Initialisation of game AI (with OM): The procedure to select intel-
ligently the strategy initially followed by the game AI is as fol-
lows. First, based on previous observations, we determine
which opponent the game AI is likely to be pitted against in a
new game. In our experiments, we consider it most likely that
the game AI will be pitted against the opponent that over the
course of numerous games has been observed the most. Subse-
quently, we initialise the game AI with the game strategy that
in previous games has proven most effective against this particu-
lar opponent. We consider a strategy effective when in previous
play it achieved a set goal criterion (thus, the game AI will never
be initialised with a predictably ineffective strategy). The goal cri-
terion can be any metric to represent preferred behaviour. In our
experiments, the goal criterion is a desired fitness value. For
instance, a desired fitness value of 100 represents a significant
victory, and a fitness value of 0 represents a situation where both
players are tied, which may be considered balanced gameplay.
2. Online strategy selection (with OM): Here we select online
which strategy to employ when a transition in the phase of
the game takes place. When opponent models are available,
the procedure of online strategy selection extends that of online
strategy selection without opponent modelling.

In the case that no opponent models are available, the procedure
is as follows. First, we preselect the N games in the case base that are
most similar to the current game. To this end, we use the computed
game indexes to preselect the games with the smallest accumulated
fitness difference with the current game, up until the current game
state. Second, of the preselected N games, we select the M games that
satisfy a particular goal criterion (e.g., obtain a positive fitness va-
lue). Third, of the selected M games, we perform the strategy of
the game observation that is most similar to the current game state
in terms of strategic features. The features for determining the stra-
tegic similarity are (1) material strength, (2) commander safety, (3)
e used in our experiments.



Table 1
Contents of the case base.

Map Games in case base Obs. in case base Data size (MB)

SmallDivide 325 213.005 650
TheRing 325 128.481 341
MetalHeckv2 325 107.081 201
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phase of the game, (4) positions captured, (5) economical strength,
and (6) unit count. The strategic features and the calculation of sim-
ilarity is discussed in more detail in previous work [3].

Naturally, we have to consider that performing strategies associ-
ated with similar observations may not yield the same outcome
when applied to the current state. Therefore, to estimate the effect
of performing the retrieved game strategy, we measure the difference
in fitness values between the current and the selected observation,
and straightforwardly compensate the expected fitness value. For in-
stance, consider that after playing the game for a certain amount of
time, the fitness value of the current game is�5, and that the fitness
value of a similar game at that same time was +5, and resulted ulti-
mately in a fitness value of +10 when the game had finished. In this
situation, we estimate that applying the game strategy under consid-
eration will result ultimately in a fitness value of 0.

In the case that opponent models are available, there is an addi-
tional moment for game adaption besides at the occurrence of
phase transitions, namely at the moment at which the opponent
player can be classified accurately. That is, the same moment at
which the opponent models were established previously. Recall
that the game AI is initialised with a game strategy on the basis
of a prediction on who the opponent player will be. The game strat-
egy is adapted if the initial prediction of the opponent player is dif-
ferent from the actually observed opponent.

Furthermore, to compare with an increased reliability the sim-
ilarities between the current game, and games that are gathered in
the case base, the classification of the opponent player is incorpo-
rated in the process of selection of the game strategy, that is de-
scribed above. The classification of the opponent player is
incorporated as a means to narrow down the preselection process,
by preselecting the N games with the smallest accumulated fitness
difference with the current game, that as an additional require-
ment have also been played against the actually observed oppo-
nent. We assume that the proposed application of opponent
modelling allows for utilising game strategies more effectively.
Our experiments investigate our assumption.
5. Experiments

This section reports on the experiments that investigate to what
extent incorporating opponent modelling enhances the perfor-
mance of case-based adaptive game AI. We first describe the exper-
imental setup (5.1). Subsequently, we discuss the performance
evaluation (5.2). Next, we report on the automatically generated
opponent models (5.3). Finally, we discuss the results obtained
with game adaptation (5.4).
5.1. Experimental setup

To test our implementation we start collecting observations of
games where two game AIs are pitted against each other. Multiple
Spring game AIs are available. We found one open-source game AI,
which the author named ‘AAI’ [66]. AAI is under active develop-
ment, and is regarded stable and effective in general play. We en-
hanced this game AI with the ability to collect game observations
in a case base, and the ability to disregard radar visibility so that
perfect information on the environment was available.1 As oppos-
ing player, we used the original AAI game AI.
1 Game developers choose generally to provide the game AI with perfect
information of the environment. Seen from a purist perspective, this is regarded as
a form of cheating behaviour. However, one of the goals for providing entertaining
game AI is to obtain effectiveness without cheating obviously. Game AI which
executes actions that are in principle unavailable, will not be regarded as entertain-
ing. By contrast, game AI that exploits discreetly perfect information in order to
provide challenging gameplay, will be regarded generally as entertaining.
For collecting observations, we simulate different players com-
peting with other distinct players, by pseudo-randomising the
strategic parameters of both players for each game. This results
in randomly generated strategic variations of predictably reason-
able behaviour. The collection process was as follows. During each
game, game observations were collected every 127 game cycles,
which corresponds to the decision-making frequency of AAI. With
the SPRING game operating at 30 game cycles per second, this re-
sulted in game observations being collected every 4.233 s.

We acknowledge that the amount of offline storage should be
low for our approach to be considered practical for implementation
in a game-production setting. We therefore store game observa-
tions in a lightweight fashion, by only abstracting the position
and unit-type of each unit for each game observation. This abstrac-
tion, of approximately 3 KB per observation, provides a powerful
basis for deriving observational features. Accordingly, a case base
was built from 448,567 observations of 975 games, resulting in
1192 MB of uncompressed observational data. Approaches are
available to keep reducing the size of the case base, such as offline
data compression and subsequent online data decompression [67],
and automatic condensation of the case base [68]. However, incor-
porating these approaches lies outside the scope of the present
research.

To determine to what extent case-based adaptive game AI can
be applied generically, we tested it while operating in three differ-
ent RTS maps. To this end, for each map we collected observations
from numerous games played on the particular map, and exploit
these observations in adaptation trials. The three maps are (a)
SmallDivide, (b) TheRing, and (c) MetalHeckv2. All maps are virtu-
ally symmetrical and have no water areas. The map SmallDivide,
illustrated in Fig. 3(a), is the default map of the SPRING game, and
has one choke point in the centre of the map. The map TheRing,
illustrated in Fig. 3(b), is a map with an impassable mountain in
the centre of the map. The map MetalHeckv2, illustrated in
Fig. 3(c), is a map without significant obstacles, that in addition
is abundant with metal resources.

All training games and adaptation trials are played under iden-
tical starting conditions. An overview of the contents of the case
base is given in Table 1. We observe that the amount of gathered
observations depends on the structure of the map. For instance,
due to the choke point in the centre of the SmallDivide map, games
on this map generally take a relatively long time to finish.

Opponent models are established after 150 game states of play,
which amounts to approximately ten minutes of real-time play.
The parameter k for k-means clustering of opponents is set to ten
percent of the total number of games. Empty clusters are removed
automatically, in case the particular value of k was set too large.

Before the game starts, offline processing of the case-base, as
well as selecting the initial strategy, is performed according to
the procedure described in previous work [3,4].2 Online (i.e., while
the game is in progress), strategy selection is performed at every
phase transition. The parameter N for online strategy selection (dis-
2 Offline processing of the case-base takes about 2 min, excluding clustering of
observations. One-time only clustering of observations takes about 36 min. Online
strategy selection takes about 0.1 s.



Table 2
Effectiveness of case-based adaptive game AI against the original opponent.

Adaptation mode Trials Goal achv. Goal achv. (%)

SMALLDIVIDE

Disabled 150 59 39
Basic 150 115 77
OM 150 135 90

THERING

Disabled 150 90 60
Basic 150 122 81
OM 150 127 85

METALHECKV2
Disabled 150 70 47
Basic 150 124 83
OM 150 130 87
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Fig. 4. Median fitness value over all game trials against the original AAI opponent
on the map SmallDivide, as a function over the relative game time.
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cussed in Subsubsection 4.4.2) is set to 50, and the parameter M is
set to 5.

5.2. Performance evaluation

To evaluate the performance of the case-based adaptive game
AI, we determined to what extent it is capable of adapting effec-
tively to game circumstances. We performed two different experi-
ments. First, we tested to what extent the case-based adaptive
game AI is capable of adapting to the original AAI game AI, set to
play in a medium playing strength. Second, we tested to what ex-
tent the case-based adaptive game AI is capable of adapting to pre-
viously unobserved opponents, which is simulated by pitting the
game AI against the original AAI game AI, initialised with randomly
generated strategies.

To establish a baseline for comparing the experimental results,
all experiments are performed in a mode where the case-based
adaptation mechanism is disabled. In this mode, the game AI no
longer intelligently determines the initial strategy, but instead
randomly selects the initial strategy, and performs no online
adaptation to game circumstances. For each experiment with
case-based adaptive game AI, we performed trials where the
case-based adaptive game AI was set to win the game (i.e., obtain
a positive fitness value). The experiment is performed in a basic
mode, and in a mode in which opponent modelling techniques
are incorporated. All experimental trials were repeated 150 times.

5.3. Generated opponent models

Opponent models were generated automatically based on
observations gathered from play on three distinct maps. Each
map was observed over 325 games. On the map SmallDivide, nine
opponent models were generated automatically. On the map TheR-
ing and MetalHeckv2, 8 and 9 opponent models were generated
automatically, respectively.

The generated models reveal that opponents observed on the
map SmallDivide typically employ a defensive playing style, have
a preference for constructing advanced buildings, and have a pref-
erence for constructing tank units. Opponents observed on the map
TheRing are typically similar to those observed on the map Small-
Divide, with the difference that they have a preference for con-
structing k-bot units, instead of tank units. Opponents observed
on the map MetalHeckv2 typically employ an aggressive playing
style, do not have a preference for constructing advanced build-
ings, and have a preference for constructing tank units.

5.4. Results of game adaptation

Table 2 gives an overview of the results of the first experiment
performed in the SPRING game. In the experiment, the case-based
adaptive game AI was pitted against the original AAI game AI on
the three different maps. The first column of the table lists the
adaptation mode of the case-based adaptive game AI. The second
column lists how often the trial was repeated. The third and fourth
column list how often the goal was achieved in absolute terms, and
in terms of percentage, respectively.

The results reveal that when pitted against the original AAI
game AI on the map SmallDivide, the effectiveness of case-based
adaptive game AI increases significantly when opponent modelling
techniques are incorporated (90%, compared to 77% without oppo-
nent modelling). Also on the maps TheRing and MetalHeckv2 the
effectiveness increases when opponent modelling techniques are
incorporated (85%, compared to 81%, and 87% compared to 83%,
respectively). These results indicate that incorporating opponent
modelling techniques indeed increases the effectiveness of case-
based adaptive game AI. Fig. 4 displays the obtained median fitness
value over all game trials against the original AAI opponent on the
map SmallDivide, as a function over the relative game time.

Tables 3 and 4 give an overview of the results of the second
experiment performed in the SPRING game. In the experiment, the
case-based adaptive game AI was pitted against the original AAI,
initialised with randomly generated strategies. The legend of Table
3 is equal to that of the first experiment. The legend of Table 4 is as
follows. The first column of the table lists the label of the randomly
generated opponent. The second column lists how often the trial
was repeated. The third, fourth and fifth column list how often
the goal was achieved in absolute terms in the mode where case-
based adaptive game AI was disabled, where it operated in basic
mode, and where it incorporated opponent modelling techniques,
respectively. In the bottom row of the table, the average effective-
ness over all trials is listed in terms of percentage.

The results displayed in Table 3 reveal that when pitted against
the original AAI game AI on the map SmallDivide, initialised with
randomly generated strategies, the effectiveness of case-based
adaptive game AI increases significantly when opponent modelling
techniques are incorporated (91%, compared to 64% without oppo-
nent modelling). On the maps TheRing and MetalHeckv2, the effec-
tiveness of case-based adaptive game AI remains stable when
opponent modelling techniques are incorporated (62%, compared
to 62%), or increases (53%, compared to 40%), respectively. These
results confirm our previous indication that applying opponent
modelling techniques increases the effectiveness of case-based
adaptive game AI.



Table 3
Effectiveness of case-based adaptive game AI against random opponents.

Adaptation mode Trials Goal achv. Goal achv. (%)

SMALLDIVIDE

Disabled 150 71 47
Basic 150 96 64
OM 150 136 91

THERING

Disabled 150 76 51
Basic 150 93 62
OM 150 93 62

METALHECKV2
Disabled 150 54 36
Basic 150 60 40
OM 150 79 53

Table 4
Effectiveness of case-based adaptive game AI against sets of random opponents.

SMALLDIVIDE

Opponent Trials Adaptation mode

Disabled Basic OM

1 10 4 9 9
2 10 6 8 9
3 10 5 5 9
4 10 4 3 5
5 10 7 9 9
6 10 7 6 9
7 10 6 7 9
8 10 7 7 9
9 10 3 6 10
10 10 5 7 9
11 10 6 8 5
12 10 6 8 7
13 10 5 7 9
14 10 5 8 7
15 10 6 6 6

Goal achv. avg. (%) 55% 69% 81%
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The findings are analogous to what we observe when case-
based adaptive game AI is pitted against sets of randomly gener-
ated opponents on the map SmallDivide (Table 4). Again, the effec-
tiveness of case-based adaptive game AI increases when opponent
modelling techniques are incorporated (81%, compared to 69%
without opponent modelling).

6. Discussion

We observed that by utilising the automatically generated mod-
els of the opponent player, the case-based adaptive game AI was
able to increase its effectiveness. However, in some circumstances,
the increase in effectiveness was relatively modest, and in one sit-
uation the effectiveness remained stable. An analysis of this phe-
nomenon shows that our approach to opponent modelling works
best in circumstances where gameplay is highly strategic (e.g.,
the map SmallDivide), compared to circumstances where strategic
gameplay is a matter of less importance (e.g., the map Metal-
Heckv2). We therefore theorise that to increase the effectiveness
in these circumstances, the opponent models should incorporate
additional features that model in more detail aspects of the oppo-
nent behaviour. In addition, improved results may be established
by incorporating knowledge on how heavily the features of the
models should be weighted (for instance by dividing features val-
ues in so-called bands [69]), and by investigating the relative
importance of each feature (for instance by applying principal
component analysis [70]).
Naturally, the case-based adaptive game AI may still be con-
fronted with an opponent that it has not observed previously. In
this situation, the inherent generalisation that is provided by the
clustering of opponent models may already have led to the game
AI being initialised with a strategy that is also effective against
the unknown opponent. Should this behaviour still be ineffective,
then it can be adapted during online play. To further increase the
robustness of case-based adaptive game AI, it may be beneficial
to track dynamically whether the projected effectiveness of apply-
ing a certain strategy is met, and when necessary adapt the strat-
egy directly. In any case, the next time that offline processing is
performed, since the case base is updated with the new game,
the previously unobserved opponent will be covered in the oppo-
nent models, and accordingly predictably effective game AI will
be generated with an increased reliability.

In our experiments we set the case-based adaptive game AI to
win the game. Many human players, however, may not derive
much entertainment from being beaten by a game AI, but would
much more enjoy a game AI losing in a ‘graceful manner.’ In previ-
ous work we established a mechanism to scale the difficulty level
to the human player, that is capable of maintaining a tie position
[3,4]. Related research determined that this approach to difficulty
scaling is generally considered entertaining by the human player
[29].
7. Conclusions

In this paper we discussed how utilising automatically-gener-
ated opponent models may enhance the effectiveness of adaptive
game AI. In our approach to adaptive game AI, domain knowledge
required to adapt to game circumstances is gathered automatically
by the game AI, and is exploited immediately (i.e., without trials
and without resource-intensive learning) to evoke effective behav-
iour in a controlled manner in online play. Opponent models were
generated automatically on the basis of observations drawn from a
multitude of games, and were utilised to initialise and adapt intel-
ligently the game strategy. We performed experiments that test
the approach in an actual RTS game, and observed a significantly
increased effectiveness of case-based adaptive game AI when a
means of opponent modelling was incorporated. From these re-
sults we may conclude that opponent modelling further improves
the basis for implementation of case-based adaptive game AI in
commercially available video games.
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Appendix A

In this appendix we describe the 27 parameters of strategic
behaviour that were used in our experiments. The parameters af-
fect the game AI’s behaviour on a high, strategic level, and not so
much on a low, tactical level. For example, the parameter AIR-
CRAFT_RATE determines on a high level how many aircraft units
should be constructed. How exactly the constructed aircraft units
should be employed is decided by lower-level game AI.
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� AIRCRAFT_RATE. Determines how many air units AAI will build
(a value of 7 means that every 7th unit will be an air unit; a
value of 1 means that constructing air units is disabled).

� AIR_DEFENCE. How often air defence units will be built.
� FAST_UNITS_RATE. Determines the amount of units that will be

selected taking their maximum speed into account ð4 ! 25%Þ.
� HIGH_RANGE_UNITS_RATE. Determines the amount of units

that will be selected taking weapons range into account
ð4 ! 25%Þ.

� MAX_AIR_GROUP_SIZE. Maximum air group size.
� MAX_ANTI_AIR_GROUP_SIZE. Maximum size of anti-air groups

(ground, hover or sea).
� MAX_ASSISTANTS. Maximum number of builders assisting con-

struction of other units/buildings.
� MAX_BASE_SIZE. Maximum base size in sectors.
� MAX_BUILDERS. Maximum builders used at the same time
� MAX_BUILDERS_PER_TYPE. How many builders of a certain type

may be built.
� MAX_DEFENCES. Maximum number of defences AAI will build

in a sector.
� MAX_FACTORIES_PER_TYPE. How many factories of a certain

type may be built.
� MAX_GROUP_SIZE. Maximum group size; AAI will create addi-

tional groups if all groups of a certain type are full.
� MAX_METAL_COST. Maximum metal cost, units that cost more

metal will not be built.
� MAX_METAL_MAKERS. Maximum number of metal makers, set

to 0 if you want to disable usage of metal makers.
� MAX_MEX_DISTANCE. Tells AAI how many sectors away from

its main base it is allowed to build metal extractors.
� MAX_MEX_DEFENCE_DISTANCE. Maximum distance to base

where AAI defends metal extractors with cheap defence-
buildings.

� MAX_SCOUTS. Maximum scouts used at the same time.
� MAX_STAT_ARTY. Maximum number of stationary artillery (e.g.,

big-bertha artillery).
� MAX_STORAGE. Maximum number of storage buildings.
� MIN_AIR_SUPPORT_EFFICIENCY. Minimum efficiency of an

enemy unit to call for air support.
� MIN_ASSISTANCE_BUILDSPEED. Minimum workertime/build-

speed of a unit to be taken into account when.
� MIN_FACTORIES_FOR_DEFENCES. AAI will not start to build sta-

tionary defences before it has built at least that number of
factories.

� MIN_FACTORIES_FOR_STORAGE. AAI will not start to build sta-
tionary defences before it has built at least that number of stor-
age buildings.

� MIN_FACTORIES_FOR_RADAR_JAMMER. AAI will not start to
build stationary defences before it has built at least that number
of radars and jammers.

� MIN_SECTOR_THREAT. The higher the value the earlier AAI will
stop to build further defences (if it has not already reached the
maximum number of defences per sector).

� UNIT_SPEED_SUBGROUPS. AAI sorts units of the same category
(e.g. ground assault units) into different groups according to
their max speed (so that slow and fast units are in different
groups to prevent the slower ones from arriving in combat much
later). This parameter indicates how many different groups will
be made.
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