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Rapid and Reliable Adaptation of Video Game AI
Sander Bakkes, Pieter Spronck, and Jaap van den Herik

Abstract—Current approaches to adaptive game AI typically re-
quire numerous trials to learn effective behavior (i.e., game adapta-
tion is not rapid). In addition, game developers are concerned that
applying adaptive game AI may result in uncontrollable and un-
predictable behavior (i.e., game adaptation is not reliable). These
characteristics hamper the incorporation of adaptive game AI in
commercially available video games. In this paper, we discuss an
alternative to these current approaches. Our alternative approach
to adaptive game AI has as its goal adapting rapidly and reliably
to game circumstances. Our approach can be classified in the area
of case-based adaptive game AI. In the approach, domain knowl-
edge required to adapt to game circumstances is gathered automat-
ically by the game AI, and is exploited immediately (i.e., without
trials and without resource-intensive learning) to evoke effective
behavior in a controlled manner in online play. We performed ex-
periments that test case-based adaptive game AI on three different
maps in a commercial real-time strategy (RTS) game. From our re-
sults, we may conclude that case-based adaptive game AI provides
a strong basis for effectively adapting game AI in video games.

Index Terms—Adaptive behavior, game AI, rapid adaptation,
real-time strategy (RTS) games, reliable adaptation.

I. INTRODUCTION

O VER the last decades, modern video games have become
increasingly realistic in their visual and auditory presen-

tation. However, game AI has not reached a high degree of re-
alism yet. Game AI is typically based on nonadaptive techniques
[1], [2]. A major disadvantage of nonadaptive game AI is that
once a weakness is discovered, nothing stops the human player
from exploiting the discovery. The disadvantage can be resolved
by endowing game AI with adaptive behavior, i.e., the ability to
learn from mistakes. Adaptive game AI can be created by using
machine-learning techniques, such as artificial neural networks
or evolutionary algorithms.

In practice, adaptive game AI in video games is seldom imple-
mented because currently it requires numerous trials to learn ef-
fective behavior (i.e., game adaptation is not rapid). In addition,
game developers are concerned that applying adaptive game AI
may result in uncontrollable and unpredictable behavior (i.e.,
game adaptation is not reliable). The general goal of our re-
search is to investigate to what extent it is possible to establish
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game AI capable of adapting rapidly and reliably to game cir-
cumstances. To allow rapid and reliable adaptation in games, we
describe an approach to behavioral adaptation in video games
that is inspired by the human capability to solve problems by
generalizing over previous observations in a restricted problem
domain. Our approach can be classified in the area of case-based
adaptive game AI.

This paper extends our previous findings [3] by applying
case-based adaptive game AI on three different game maps and
incorporating a baseline comparison in the discussion of the
experimental results. Thereby we strengthen the experimental
conclusions, and demonstrate generalizability. In addition, we
discuss in more detail the design considerations, we give a more
extensive description of related work, and we discuss both the
contributions and limitations of our approach.

The outline of this paper is as follows. We first discuss related
work in the field of adaptive game AI (Section II). Subsequently,
we describe our approach to create a case-based adaptive archi-
tecture for game AI (Section III). Next, we discuss an imple-
mentation of case-based adaptive game AI (Section IV). Then,
we report on the experiments that test case-based adaptive game
AI in an actual video game (Section V), which is followed by a
discussion of the experimental results (Section VI). Finally, we
provide conclusions and describe future work (Section VII).

II. RELATED WORK

This section discusses related work about entertainment and
game AI (Section II-A), adaptive game AI (Section II-B), and
difficulty scaling (Section II-C). Finally, a summary of the sec-
tion is provided (Section II-D).

A. Entertainment and Game AI

The purpose of a typical video game is to provide entertain-
ment [1], [4]. Naturally, the criteria of what makes a game en-
tertaining are dependent on who is playing the game. The litera-
ture suggests the concept of immersion as a general measure of
entertainment [5], [6]. Immersion is the state of consciousness
where an immersant’s awareness of physical self is diminished
or lost by being surrounded in an engrossing, often artificial en-
vironment [7]. Taylor argues that evoking an immersed feeling
by a video game is essential for retaining a player’s interest in
the game [6]. As such, an entertaining game should at the very
least not repel the feeling of immersion from the player [8]. Aes-
thetic elements of a video game such as graphical and auditory
presentation are instrumental in establishing an immerse game
environment. Once established, the game environment needs to
uphold some form of consistency for the player to remain im-
mersed [8].

To this end, the task for game AI is to control game charac-
ters in such a way that behavior exhibited by the characters is
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consistent within the game environment. In a realistic game en-
vironment, realistic character behavior is expected. As a result,
game AI that is solely focused on exhibiting the most effective
behavior [e.g., in a first-person shooter (FPS] game aiming with
an accuracy of 100%) is not necessarily regarded as realistic.

Consistency of computer-controlled characters within a game
environment is often established with tricks and cheats. For in-
stance, in the game Half-Life, tricks were used to create the illu-
sion of collaborative teamwork [8], causing human players to as-
sume intelligence where in fact none existed [9]. While it is true
that tricks and cheats may be required to uphold consistency of
the game environment, they often are implemented only to com-
pensate for the lack of sophistication in game AI [10]. In prac-
tice, game AI in most complex games is not consistent within
the game environment, and exhibits what has been called “artifi-
cial stupidity” [9] rather than artificial intelligence. To increase
game consistency, we primarily aim at creating an optimally
playing game AI, as suggested by Buro and Furtak [10]. By
increasing the game consistency, by implication, the entertain-
ment value of a video game increases. In complex video games,
such as real-time strategy (RTS) games, near-optimal game AI
is seen as the basis for obtaining consistency of the game envi-
ronment [8]. Naturally, we still consider that game AI needs to
be tailored to be appropriate for individual players. This is dis-
cussed in Section II-C.

B. Adaptive Game AI

Modern video games present a complex and realistic envi-
ronment in which characters controlled by game AI are ex-
pected to behave realistically (human-like). An important fea-
ture of human-like behavior of game AI is the ability to adapt
to changing circumstances. Game AI endowed with this ability
is called “adaptive game AI,” and is typically implemented via
machine-learning techniques. Adaptive game AI may be used
to improve the quality of game AI significantly by learning ef-
fective behavior while the game is in progress. Adaptive game
AI has been successfully applied to uncomplicated video games
[11]–[13], and to complex video games [14].

To deal with the complexities of video games, in recent years,
researchers have adopted increasingly case-based reasoning
(CBR) and case-based planning (CBP) approaches in their
work. For instance, Sharma et al. developed an approach for
achieving transfer learning in the Madrts game, by using a
hybrid CBR and reinforcement learning algorithm [15]. Aha
et al. developed a retrieval mechanism for tactical plans in the
Wargus game [16] that builds upon domain knowledge gener-
ated by Ponsen and Spronck [17]. Ontañón et al. established
a framework for CBP on the basis of annotated knowledge
drawn from expert demonstrations in the Wargus game [18].
Auslander et al. used CBR to allow reinforcement learning to
respond more quickly to changing circumstances in the Unreal
Tournament domination game [19]. Louis and Miles applied
case-injected genetic algorithms to learn resource allocation
tasks in RTS games [20]. Baumgarten et al. established an
approach for simulating human game play in strategy games
using a variety of AI techniques, including, among others, CBR
[21].

Generally, we observe that learning effective behavior while
the game is in progress (i.e., online), typically requires an inef-
ficiently large number of learning trials. In addition, it is not un-
common that a game has finished before any effective behavior
could be established, or that game characters in a game do not
live sufficiently long to benefit from learning. As a result, it is
difficult for players to perceive that the game AI is learning.
This renders the benefits of online learning in video games sub-
jective and unclear [22]. In addition, we observe that even with
advanced approaches to game AI, it is often difficult to estab-
lish effective behavior in a controlled and predictable manner.
Therefore, the focus of this research is to create rapidly and re-
liably effective behavior of game AI.

C. Difficulty Scaling

Difficulty scaling is the automatic adaptation of the challenge
a game poses to the skills of a human player [23]. When applied
to game AI, difficulty scaling aims usually at achieving an “even
game,” i.e., a game wherein the playing strength of the computer
and the human player match.

Once near-optimal game AI is established, difficulty-scaling
techniques can be applied to downgrade the playing strength
of game AI [23] to ensure that a suitable challenge is created
for the player. Many researchers and game developers consider
game AI, in general, to be entertaining when it is difficult to
defeat [24]. Although for strong players that may be true, novice
players will not enjoy being overwhelmed by the computer. For
novice players, a game is most entertaining when the game is
challenging but beatable [25].

The only means of difficulty scaling implemented in most
games is typically provided by a “difficulty setting,” i.e., a dis-
crete parameter that determines how difficult the game will be.
The purpose of a difficulty setting is to allow both novice and
experienced players to enjoy the appropriate challenge the game
offers. Usually the parameter influences the psychical properties
of the opponents, such as their strength. Very rarely the param-
eter influences the opponents’ tactics. Consequently, even on
a “hard” difficulty setting, opponents exhibit inferior behavior,
despite their high physical strength and health. In addition, it
is hard for the player to estimate reliably the difficulty level
that is appropriate for himself. Finally, discrete difficulty set-
tings cannot be fine-tuned to be appropriate for each player.

In recent years, researchers have developed advanced tech-
niques for difficulty scaling of game AI. Hunicke and Chapman
explore difficulty scaling by controlling the game environment
(i.e., the number of weapons and power-ups available to a
player) [26]. Demasi and Cruz use coevolutionary algorithms to
gradually teach game characters how to behave [27]. Spronck
et al. use weights assigned to possible game strategies, to deter-
mine dynamically whether predictably strong game strategies
should be executed [23]. Yannakakis and Hallam provide a
qualitative and quantitative means for measuring player enter-
tainment in real time [28].

D. Summary of Related Work

In summary, two desired characteristics of game AI discussed
in this section are consistency and challenge. They serve as a
guideline of our approach to adaptive game AI. In our approach,
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Fig. 1. Case-based adaptive game AI (see text for details).

consistency of the game environment is maintained by adapting
rapidly and reliably to game circumstances. In addition, in our
approach, we consider that the challenge that is provided by
the game AI should be adaptable to fit individual players. Our
approach is discussed next.

III. ADAPTIVE ARCHITECTURE

This section discusses our approach to create an effective
adaptive architecture for game AI. First, we discuss the design
considerations of the approach (Section III-A). Second, we dis-
cuss the approach, which we refer to as case-based adaptive
game AI (Section III-B). Third, we discuss the contributions and
limitations of the approach (Section III-C).

A. Design Considerations

Game AI should be challenging and consistent with the game
environment in which it is situated. To this end, game AI re-
quires the ability to adapt to changing circumstances. Typically,
adaptive game AI is implemented for performing adaptation of
the game AI in an online and computer-controlled fashion. Im-
proved behavior is established by continuously making (small)
adaptations in the game AI. To adapt to circumstances in the
current game, the adaptation process normally is based only on
observations of current game play. This is called incremental
adaptive game AI. The incremental approach may be used to
improve significantly the quality of game AI by endowing game
AI with the capability of adapting its behavior while the game
is in progress.

A recurring characteristic of incremental adaptive game AI is
its difficulty with establishing rapid and reliable adaptation of
game AI. The reason is that the incremental approach to adaptive
game AI requires either 1) a high quality of the domain knowl-
edge used (which generally is unavailable to the AI), or 2) a
large number of trials to learn effective behavior online (which
in an actual video game is highly undesirable).

Naturally, going through a large number of adaptation trials
does not coincide with our goal of adapting rapidly game AI.

As a result, one can only adapt rapidly to game circumstances,
by improving the quality of the domain knowledge that is ex-
ploited. The same holds for our goal of reliably adapting game
AI; one can only adapt reliably to game circumstances, when the
domain knowledge incorporates accurate estimates on the effect
of a game adaptation under consideration. Domain knowledge
of such high quality is not available to the adaptation process of
incremental adaptive game AI, which is based only on observa-
tions of the current game play.

Considering the previous discussion, it is clear that incre-
mental adaptive game AI cannot be applied successfully to the
extent that it can be used to adapt rapidly and reliably game
AI in online game playing conditions. For online adaptation of
game AI, capable of rapid and reliable adaptation of game AI,
it is therefore necessary that an alternative is established for the
incremental adaptive game AI approach. Our proposal for an al-
ternative approach is discussed next.

B. Case-Based Adaptive Game AI

To achieve rapidly and reliably adaptive game AI, we propose
an alternative, novel approach to adapting the AI of video games
free of the hampering requirements of typical adaptive game AI.
We refer to the approach as “case-based adaptive game AI.” We
define case-based adaptive game AI as an approach to game AI
where domain knowledge is gathered automatically by the game
AI, and is exploited immediately (i.e., without trials and without
resource-intensive learning) to evoke effective behavior.

This approach to adaptive game AI is expected to be particu-
larly successful in games that have access to the internet to store
and retrieve samples of game play experiences. For instance, in
the popular massive multiplayer online games (MMOGs), ob-
servations from many games played against many different op-
ponents are available to the game AI. The approach is illustrated
in Fig. 1. It implements a direct feedback loop for control of
characters operating in the game environment. The behavior of
a game character is determined by the game AI. Each game char-
acter feeds the game AI with data on its current situation, and
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with the observed results of its actions (see bottom of Fig. 1).
The game AI adapts by processing the observed results, and gen-
erates actions in response to the character’s current situation.
An adaptation mechanism is incorporated to determine how to
adapt the game AI in the best way. For instance, reinforcement
learning may be applied to assign rewards and penalties to cer-
tain behavior exhibited by the game AI.

In Fig. 1, for rapid adaptation, we have extended the feedback
loop by 1) explicitly processing observations from the game AI,
and 2) allowing the use of attributes which are not directly ob-
served by the game character (e.g., observations of teammates).
Inspired by the CBR paradigm, the approach collects character
and game-environment observations, and extracts from those a
case base. The case base contains all observations relevant for
the adaptive game AI, without redundancies. The observations
are time-stamped and structured in a standard format for rapid
access. To adapt rapidly to circumstances in the current game,
the adaptation process is based on domain knowledge drawn
from observations of a multitude of games. The domain knowl-
edge gathered in a case base is typically used to extract models
of game behavior, but can also directly be exploited to adapt the
AI to game circumstances. In our proposal of case-based adap-
tive game AI, the case base is used to extract an evaluation func-
tion and opponent models. Subsequently, the evaluation func-
tion and opponent models are incorporated in an adaptation
mechanism that directly exploits the gathered cases during on-
line play.

The approach to case-based adaptive game AI is inspired by
the human capability to reason reliably on a preferred course of
action with only a few online observations on the problem do-
main. Following from the complexity of modern video games,
we propose that for effective and rapid use, game observations
should be 1) represented in such a way that the stored cases can
be reused for previously unconsidered situations, and 2) be com-
pactly stored in terms of the amount of gathered feature data. As
far as we know, our approach to rapidly and reliably adapting
game AI has not yet been implemented in an actual video game.

C. Contributions and Limitations of the Approach

Game developers may consider using an alternative approach
to game AI when they are convinced of its qualitative effective-
ness. The main contribution of our research therefore is demon-
strating that case-based adaptive game AI can be applied gener-
ically in a complex video game. In this paper, we will demon-
strate in an RTS game that the approach can be applied both to
generate effective game strategies and to scale automatically the
difficulty level to the player.

To this end, the approach is adjusting a preexisting game AI,
rather than “being the AI” (as most previous CBR approaches
to game AI), based on a case base drawn from observations of
a multitude of games. Particularly in the popular multiplayer
games, the case base is expected to grow rapidly. With a suf-
ficiently large and diverse case base, the adaptation process no
longer needs to go through a large number of adaptation trials,
but instead can adapt instantly to game circumstances. Further-
more, the game AI will become robust in dealing with nondeter-
minism, since the case base can be used as a model to predict the
results of game strategies. An advantage of the approach tying

Fig. 2. Screenshot of the Spring game environment. The base on the top left is
being attacked via a narrow cliff passage.

in with a preexisting game AI is that it enables game developers
to control and predict with relative accuracy the behavior that
is exhibited by the game AI. In addition, the case base can be
utilized for providing feedback on distinct strengths and weak-
nesses of a player, and can provide inexpensive insight into the
balance of a game. Thus, it can help in testing and debugging
the game.

Naturally, the approach has certain limitations. A first lim-
itation is that it is not fully knowledge free, but requires some
domain knowledge to steer the adaptation process. For instance,
the features to compare the similarity of game observations need
to be established. We assume that such domain knowledge is
available to the developers of the game. A second limitation is
that for effective adaptation, the case base needs to contain cases
relevant to the current circumstances. This limitation is partially
addressed by generalizing over stored cases. A third limitation
is that the ability to adapt to changing circumstances is restricted
by the behavioral expressiveness provided by the game AI that
the approach ties in with.

IV. IMPLEMENTATION

This section discusses our implementation of case-based
adaptive game AI. We subsequently discuss the game en-
vironment in which we implement case-based adaptive
game AI (Section IV-A), the established evaluation function
(Section IV-B), and an adaptation mechanism inspired by the
CBR paradigm (Section IV-C). Previously created opponent
models [29] will be incorporated in future research.

A. The Spring Game Environment

The game environment in which we implement case-based
adaptive game AI, is the video game Spring [30]. Spring, illus-
trated in Fig. 2, is a typical and open-source RTS game, in which
a player needs to gather resources for the construction of units
and buildings. The aim of the game is to use the constructed
units and buildings to defeat an enemy army in a real-time battle.
A Spring game is won by the player who first destroys the op-
ponent’s “commander” unit.

Modern RTS games typically progress through several dis-
tinct phases as players perform research and create new build-
ings that provide them with new capabilities. The phase of a
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game can be straightforwardly derived from the observed tra-
versal through the game’s tech tree. A tech tree is a directed
graph without cycles that models the possible paths of research
a player can take within the game. Traversing parts of the tech
tree is (almost) always advantageous, yet there is a cost for doing
so in time and game resources. In Spring, three levels of tech-
nology are available. At the start of the game, a player can only
construct level 1 structures and level 1 units. Later in the game,
after the player has performed the required research, advanced
structures and units of level 2 and level 3 become available.

B. Evaluation Function

To exhibit behavior consistent within the game environment
presented by modern video games, the game AI needs the ability
to assess the current situation accurately. This requires an ap-
propriate evaluation function. The high complexity of modern
video games makes the task to generate such an evaluation func-
tion for game AI a difficult one.

In previous research, we discussed an approach to generate
automatically an evaluation function for game AI in RTS games
[31]. The approach to generate an evaluation function incorpo-
rated temporal difference (TD) learning [32] to learn unit-type
weights, which reflect the actual playing strength of each unit
type. Our evaluation function for the game’s state is denoted by

(1)

where is a free parameter to determine the weight
of each term of the evaluation function, and is a pa-
rameter that represents the current phase of the game. Our eval-
uation function incorporates two evaluative terms, the term
that represents the material strength and the term that rep-
resents the commander safety. The selection of the two terms
follows our expert knowledge with the game. The terms can be
distinctly weighted for each phase of the game, to reflect their
varying importance during play of the game (e.g., material bal-
ance may be more import early in the game, where commander
safety may be more important later in the game).

Previous research performed in the Spring environment has
shown that the accuracy of situation assessments is closely re-
lated to the phase of the game in which they are made [33].
To distinguish phases of the Spring game, we map tech levels
to game phases and distinguish between when tech levels are
“new,” and when they are “mature,” as indicated by the presence
of units with a long construction time. This leads us to define the
following five game phases.

• Phase 1: level 1 structures observed.
• Phase 2: level 1 units observed that have a build time

.
• Phase 3: level 2 structures observed.
• Phase 4: level 2 units observed that have a build time

.
• Phase 5: level 3 units or level 3 structures observed.
Results of experiments to test the established evaluation func-

tion showed that just before the game’s end, the function is able
to predict correctly the outcome of the game with an accuracy
that approaches 100%. In addition, experimental results showed

that the evaluation function predicts ultimate wins and losses ac-
curately before half of the game is played.1 From these results,
we then concluded that the established evaluation function ef-
fectively predicts the outcome of a Spring game and that the pro-
posed approach is suitable for generating evaluation functions
for highly complex video games, such as RTS games. There-
fore, we incorporate the established evaluation function in the
implementation of our case-based adaptive game AI.

C. Adaptation Mechanism

In our approach, domain knowledge collected in a case base is
exploited for adapting game AI. To generalize over observations
with the problem domain, the adaptation mechanism incorpo-
rates an offline means to index collected games, and performs
an offline clustering of observations. To ensure that game AI is
effective from the onset of a game, it is initialized with a pre-
viously observed, successful game strategy. For online strategy
selection, a similarity matching is performed that considers six
experimentally determined features.

We define the game strategy as the configuration of param-
eters that determine strategic behavior. The term “opponent
strategy” is used analogous to game strategy, to reflect that it
concerns a game strategy that is employed by the opponent
player. In the game AI that we used in our experiments, we
found 27 parameters that determine the game strategy of the
game AI. The concerning parameters affect the game AI’s be-
havior on a high, strategic level, and not on a low, tactical level.
For example, the parameter AIRCRAFT_RATE determines on
a high level how many aircraft units should be constructed.
How exactly the constructed aircraft units should be employed
is decided by lower level game AI. All 27 parameters are
described in the Appendix.

The adaptation mechanism is algorithmically described
below, and is subsequently discussed in detail.

// Offline processing
A1) Game indexing; calculate indexes for all stored

games.
A2) Clustering of observations; group together similar

observations.
// Initialization of game AI
B1) Establish the (most likely) strategy of the opponent

player.
B2) Determine to which parameter-band values this

opponent strategy can be abstracted.
B3) Initialize game AI with an effective strategy

observed against the opponent with the most similar
parameter-band values.

1We should point out here that a human player would probably score 100%
on correctly predicting the outcome of a game in its final stage. The fact that the
score function does not achieve human performance is not an indication that it
is badly designed for the following two reasons. First, the evaluation function is
tuned to make predictions that are good during a large part of the game, not only
at the end, and therefore, it will trade prediction accuracy at the end of the game
for higher prediction accuracy earlier in the game. Second, if the goal of the
game was to destroy all the opponent’s units, a correct prediction would be easy
to make at the end. However, the goal is to destroy the opponent’s cCommander,
and we found that it sometimes happens that a player who is behind in material
strength can still win (e.g., when the opponent’s commander makes a high-risk
move, such as attacking strong enemy units on its own).
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// Online strategy selection
C1) Use game indexes to select the most similar

games.
C2) Of the selected games, select the games that

best satisfy the goal criterion.
C3) Of the selected games, select the most similar

observation.
C4) Perform the game strategy stored for the selected

observation.

1) Game Indexing (A1): We define a game’s index as a vector
of fitness values, containing one entry for each time step. These
fitness values represent the desirability of all observed game
states. To calculate the fitness value of an observed game state,
we use the previously established evaluation function [shown
in (1)]. Game indexing is supportive for later strategy selection.
As it is a computationally expensive procedure, it is performed
offline.

2) Clustering of Observations (A2): As an initial means to
cluster similar observations, we apply the standard -means
clustering algorithm [34]. Even though this algorithm is effec-
tive for our current setup, alternatives such as tree-indexing
structures (e.g., -trees [35] or cover trees [36]) may be
considered when working with increasingly large collections
of cases.

The metric that expresses an observation’s position in the
cluster space comprises a weighted sum of the six observational
features that also are applied for similarity matching. Clustering
of observations is supportive for later strategy selection. As it is
a computationally expensive procedure, it is performed offline.

3) Similarity Matching (A2 and C3): To compare a given ob-
servation with another observation, we define six observational
features, namely: 1) phase of the game, 2) material strength,
3) commander safety, 4) positions captured, 5) economical
strength, and 6) unit count. Similarity is defined by a weighted
sum of the absolute difference in features values. The selection
of the features and the weights assigned to each feature are
determined by the experimenter based on experience with the
game environment. The weighted sum for both clustering of
observations and similarity matching is calculated as follows:

As observations are clustered, calculating the similarity between
observations is computationally relatively inexpensive. This is
important, as similarity matching must be performed online.

4) Initialization of Game AI (B1–B3): To select intelligently
the strategy initially followed by the game AI, one needs to de-
termine which strategy the opponent is likely to employ. To this
end, we model opponent players based on actual game obser-
vations. In the current experiment, we construct the opponent
models on the basis of observations of the parameter values
of the opponent strategies, which indicate the strategic prefer-
ences of particular opponents. In future work, we will assume

that parameters of the underlying opponent behavior cannot be
observed directly, and thus opponent models will have to be es-
tablished via alternative techniques, such as statistical learning.

Our procedure to initialize the game AI is as follows. Once the
opponent strategy has been identified, we determine in which
parameter bands [37] the opponent strategy can be abstracted.
We define three bands for each parameter: “low,” “medium,” and
“high.” We subsequently initialize the game AI with an effective
strategy observed against the most similar opponent. We con-
sider a strategy effective when in previous play it achieved a set
goal criterion (thus, the game AI will never be initialized with a
predictably ineffective strategy), and consider opponents strictly
similar when the abstracted values of the parameter bands are
identical.

5) Online Strategy Selection (C1–C4): This step selects on-
line which strategy to employ. The procedure is as follows.
Using the game indexes, we first preselect the games with the
smallest accumulated fitness difference with the current game,
up until the current observation. Subsequently, of the selected

games, we perform the game strategy of the most similar ob-
servation of the games that satisfy a particular goal criterion.
The goal criterion can be any metric to represent preferred be-
havior. In our experiments, the goal criterion is a desired fitness
value. For instance, a desired fitness value of 100 represents a
significant victory, and a fitness value of 0 represents a situa-
tion where both players are tied, which may be considered bal-
anced game play. Naturally, we have to consider that performing
strategies associated with similar observations may not yield the
same outcome when applied to the current state. Therefore, to
estimate the effect of performing the retrieved game strategy, we
measure the difference in fitness values between the current and
the selected observation, and straightforwardly compensate the
expected fitness value. For instance, consider that after playing
the game for a certain amount of time, the fitness value of the
current game is , and that the fitness value of a similar game
at that same time was , and resulted ultimately in a fitness
value of when the game had finished. In this situation, we
estimate that applying the concerning game strategy will result
ultimately in a fitness value of 0.

V. EXPERIMENTS

This section discusses experiments that test our implementa-
tion of case-based adaptive game AI. We first describe the exper-
imental setup (Section V-A). Subsequently, we discuss the per-
formance evaluation (Section V-B). Next, we discuss the results
obtained with game adaptation (Section V-C). Finally, we dis-
cuss the results obtained with difficulty scaling (Section V-D).

A. Experimental Setup

To test our implementation we start collecting observations
of games where two game AIs are pitted against each other.
As multiple Spring game AIs are available, we first have to se-
lect a game AI that is suitable for our experiments. We found
one open-source game AI, which the author of the AI named
“AAI” [38]. AAI is under active development, and is regarded
stable and effective in general play. The game AI integrates ro-
bust resource management, and follows a moderately defensive
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Fig. 3. The three maps that were used in our experiments. (a) SmallDivide. (b)
TheRing. (c) MetalHeckv2.

playing style. We enhanced this game AI with the ability to col-
lect game observations in a case base, and the ability to disregard
radar visibility so that perfect information on the environment
was available. As opponent player, we used the original AAI
game AI.

To determine to what extent case-based adaptive game AI can
be applied generically, we test it while operating in three dif-
ferent RTS maps. To this end, for each map, we collect observa-
tions from numerous games played on the particular map, and
exploit these observations in adaptation trials. The three con-
cerning maps are: 1) SmallDivide, 2) TheRing, and 3) Metal-
Heckv2. All maps are symmetrical and have no water areas. The
map SmallDivide, illustrated in Fig. 3(a), is the default map of
the Spring game, and has one choke point in the center of the
map. The map TheRing, illustrated in Fig. 3(b), is a map with
an impassable mountain in the center of the map. The map Met-
alHeckv2, illustrated in Fig. 3(c), is a map without significant
obstacles, which in addition is abundant with metal resources.

For collecting observations, we simulate competition be-
tween different players by pseudorandomizing the strategic

TABLE I
CONTENTS OF THE CASE BASE

parameters of both players for each game. This results in
randomly generated strategic variations of predictably reason-
able behavior (and not fully random strategic behavior). The
collection process was as follows. During each game, game
observations were collected every 127 game cycles, which
corresponds to the update frequency of AAI. With the Spring
game operating at 30 game cycles per second, this resulted in
game observations being collected every 4.233 s.

We acknowledge that the amount of offline storage should be
low for our approach to be considered practical for implementa-
tion in a game-production setting. We therefore store game ob-
servations in a lightweight fashion, by only abstracting the posi-
tion and unit type of each unit for each game observation. This
abstraction, of approximately 3 kB per observation, provides a
powerful basis for deriving observational features. Accordingly,
a case base was built from 448 567 observations of 975 games,2

resulting in a case base consisting of 1192 MB of uncompressed
observational data. Approaches are available to keep reducing
the size of the case base, such as offline data compression and
subsequent online data decompression [39], and automatic con-
densation of the case base [40]. However, incorporating these
approaches lies outside the scope of this research.

All training games and adaptation trials are played under
identical starting conditions. An overview of the contents of
the case base is given in Table I. We observe that the amount of
gathered observations depends on the structure of the map. For
instance, due to the choke point in the center of the SmallDivide
map, games on this map generally take a relatively long time
to finish.

For offline clustering of observations, is set to 10% of the
total number of observations. Before the game starts, the ini-
tial strategy is determined. Online, i.e., while the game is in
progress, strategy selection is performed at every phase transi-
tion. When the case-based adaptive game AI is set to uphold a
tie, strategy selection is performed when the difference between
the desired goal fitness and the fitness value of the currently ob-
served game state is larger than a predefined threshold value.

As a general setting for online strategy selection, the param-
eter for strategy selection is set to 50, and the parameter

is set to 5. The threshold value for adaptation in the up-
holding tie scenario is set to 2. Offline processing of the case
base takes about 2 min, excluding clustering of observations.
One-time-only clustering of observations takes about 36 min.

2Naturally, the effectiveness of behavior established via a case-based ap-
proach depends on the quality of the cases that are gathered in the case base.
For our setup, where game strategies are established from pseudorandomized
self-play, our estimation is that for each map several hundred games must be
observed before effective behavior can be established.
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Online strategy selection takes about 0.1 s. Experiments are per-
formed on a PC built around an Intel Core 2 Quad CPU @
2.40 GHz, with 2-GB RAM.

B. Performance Evaluation

To evaluate the performance of the case-based adaptive game
AI, we determined to what extent it is capable of effectively
adapting to game circumstances. We performed three different
experiments. First, we tested to what extent the case-based adap-
tive game AI is capable of adapting to the original AAI game
AI, set to play in a medium playing strength. Second, we tested
to what extent the case-based adaptive game AI is capable of
adapting to previously unobserved opponents, which is simu-
lated by pitting the game AI against the original AAI game AI,
initialized with randomly generated strategies. Third, as a form
of difficulty scaling, we tested to what extent the case-based
adaptive game AI is capable of upholding a tie when pitted
against the original AAI game AI, also set to play at a medium
playing strength.

For each of the first two experiments, we performed a trial
where the case-based adaptive game AI was set to win the game
(i.e., obtain a positive fitness value). For the third experiment,
we set the adaptive game AI to uphold a tie (i.e., maintain a fit-
ness value of 0, while never obtaining a fitness value smaller
than 10, or greater than 10). To measure how well the case-
based adaptive game AI is able to maintain a fitness value of
0, the variance in fitness value is calculated. A low variance
implies that the case-based adaptive game AI has the ability
to maintain consistently a predefined fitness value. All exper-
imental trials were repeated 150 times.

To establish a baseline for comparing the experimental re-
sults, all experiments on the map SmallDivide are repeated in
a configuration where the case-based adaptation mechanism is
disabled. In this configuration, the game AI no longer intelli-
gently determines the initial strategy, but instead randomly se-
lects the initial strategy, and performs no online adaptation to
game circumstances.

C. Results of Game Adaptation

Table II gives an overview of the baseline results of the first
and second experiments performed in the Spring game, obtained
with disabled case-based adaptation. The first column of each
table lists against which opponent the game AI was pitted. The
second column lists how often the trial was repeated. The third
and fourth columns list how often the goal was achieved in ab-
solute terms, and in terms of percentage, respectively.

The baseline results reveal that by default, the original AAI
game AI is initialized at a competitive level on the map SmallDi-
vide, as the game AI with disabled case-based adaptation mech-
anism is only able to win 39% of the time. In contrast, on the
map TheRing, the opponent is more easy to defeat. In addition,
the results reveal that in randomized play on two of the maps,
the effectiveness of the game AI approximates 50%, as may be
expected.

Table III gives an overview of the results of the first and
second experiments performed in the Spring game, obtained
with the case-based adaptation mechanism. The experiments
concerned the adaptation ability of the case-based adaptation

TABLE II
BASELINE EFFECTIVENESS WITH DISABLED ADAPTATION MECHANISM

TABLE III
EFFECTIVENESS WITH ENABLED ADAPTATION MECHANISM

mechanism. The legend of Table III is equal to that of the table
with the baseline results.

The results reveal that when pitted against the original AAI
game AI, set to play in a medium playing strength, the case-
based adaptation mechanism improves significantly on the es-
tablished baseline effectiveness on the map SmallDivide (77%,
compared to the baseline 39%). In addition, the results reveal
that when pitted against the original AAI game AI, on each
of the three maps, the case-based adaptation mechanism effec-
tively obtains a victory (77%, 81%, and 83% of the experimental
runs, respectively). These results indicate that the case-based
adaptation mechanism is generically effective in play against
the original AAI game AI. Fig. 4 displays the obtained fitness
value as a function over time of two typical experimental runs
on the map SmallDivide. Fig. 5 displays the obtained median
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Fig. 4. Obtained fitness values as a function over time, when pitted against the original AAI game AI on the map SmallDivide. The figure displays a typical
experimental result of 1) adaptation mechanism set to win the game, and 2) the adaptation mechanism set to uphold a tie.

Fig. 5. Median fitness value over all game trials against the original AAI op-
ponent on the map SmallDivide, as a function over the relative game time.

fitness value over all game trials against the original AAI op-
ponent on the map SmallDivide, as a function over the relative
game time.

In addition, the results reveal that when pitted against the
original AAI game AI, initialized with randomly generated
strategies, the case-based adaptation mechanism improves
by 17% on the established baseline effectiveness on the map
SmallDivide. This improvement in effectiveness is consistent
with our findings on the map TheRing, where the case-based
adaptation mechanism improves by 11% on the baseline effec-
tiveness, compared to the baseline effectiveness. In randomized

TABLE IV
BASELINE EFFECTIVENESS UPHOLDING A TIE

play on the map MetalHeckv2, the effectiveness of the game AI
improves by 4%. A precise explanation for the latter, relatively
small improvement is difficult to pin down. We surmise that
considerable improvement is hampered by certain low-level AI
effects that, in randomized play on the map, are not influenced
by adapting the high-level AI parameters. That is, while the
starting positions might seem equal from the perspective of a
human player, the low-level AI might be biased in being more
effective at starting, for instance, at the top of the map rather
than at the bottom.

D. Results of Difficulty Scaling

Table IV gives an overview of the baseline results of the
third experiment, obtained with disabled case-based adaptation.
Table V gives an overview of the results of the third experiment,
obtained with case-based adaptive game AI. The first column of
each table lists against which opponent the game AI was pitted.
The second column lists how often the trial was repeated. The
third column lists the average time to uphold a tie position, and,
between brackets, the accompanying standard deviation of the
obtained result. The fourth column lists the average variance in
fitness value, and, between brackets, the accompanying standard
deviation of the obtained result.

The experiment concerned the difficulty scaling ability of
the case-based adaptive game AI. The results reveal that when
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TABLE V
UPHOLDING A TIE WITH CASE-BASED ADAPTIVE GAME AI

pitted against the original AAI opponent, the case-based adap-
tive game AI improves significantly on the time in which a tie
is upheld on the map SmallDivide (37.37 min, compared to the
baseline 26.98 min). In addition, the results reveal that on each
of the three maps the case-based adaptive game AI is capable of
upholding a tie for a sustained period of time (37.37, 18.42, and
18.94 min on average, respectively). In its attempt to get close
to the target fitness value, the case-based adaptive game AI ob-
tains a relatively low variance (1.93, 1.55, and 1.80 on average,
respectively). The typical result given in Fig. 4 reveals that a tie
can be upheld for a sustained period of time. However, at cer-
tain point in time, inevitably, the game AI will no longer be able
to compensate for the play of the opponent, and the game will
either be won or lost by the player.

Comparable difficulty scaling results are obtained when the
case-based adaptive game AI was pitted against opponents with
randomly generated strategies. The results reveal that when
pitted against opponents with randomly generated strategies,
the case-based adaptive game AI improves significantly on the
time in which a tie is upheld on the map SmallDivide (36.23
min, compared to the baseline 27.56 min). In addition, the
results reveal that when pitted against opponents with randomly
generated strategies, on each of the three maps, the case-based
adaptive game AI is able to uphold a tie for a sustained period of
time (36.23, 21.95, and 18.49 min on average, respectively). In
its attempt to get close to the target fitness value, the case-based
adaptive game AI obtains a relatively low variance (1.90, 1.56,
and 1.89 on average, respectively).

VI. DISCUSSION

In the experiments that test our implementation of case-based
adaptive game AI, we observed that the game AI was well able
to achieve a victory when pitted against the original AAI game
AI, set to play in a medium playing strength. We noticed that the
case-based adaptive game AI was able to find in the case base a
strategy that could effectively defeat the original AAI game AI.

As the original AAI game AI is not able to adapt its behavior, the
case-based adaptive game AI could exploit its discovery indef-
initely. Note that in some cases, the case-based adaptive game
AI did not win the game, despite it exhibiting strong behavior.
Such outliers cannot be avoided due to the inherent randomness
that is typical to video games. For instance, in the Spring game,
the most powerful unit is able to destroy a commander unit with
a single shot. Should the commander be destroyed in such a way,
the question would arise if this was due to bad luck, or due to an
effective strategy by the opponent. For game AI to be accepted
as effective players, one could argue, recalling the previously
mentioned need for consistent AI behavior, that game AI should
not force a situation that may be regarded as the result of lucky
circumstances.

In addition, we observed that even in play with randomized
strategic parameter values, the case-based adaptation mecha-
nism is generally able to find effective strategies in the case
base, and was thereby able to improve on the randomized per-
formance. This is a satisfactory result. As randomized play may
be considered a simulated way to test the game AI against pre-
viously unobserved opponents, naturally, the question remains
how the performance in randomized play can be further en-
hanced. We discuss two approaches to enhance the performance
in play with randomized strategic parameter values.

First, note that for each map our case base currently consists
of observations collected over 325 games. For randomized play,
determined by 27 pseudorandomized behavioral parameters, it
would be beneficial to collect more games in the case base in
order to increase the probability of it containing effective game
strategies. As case-based adaptive game AI can be expected to
be applied in the play-testing phase of game development, and
predictably in multiplayer games, the case base in practical ap-
plications is expected to grow rapidly to contain a multitude of
effective strategies.

Second, we observed that the final outcome of a Spring game
is largely determined by the strategy that is adopted in the begin-
ning of the game. This exemplifies the importance of initializing
the game AI with effective behavior. In order to do so, a player
needs to determine accurately the opponent against whom it will
be pitted. In video-game practice, (human) game opponents do
not exhibit behavior as random as in our experimental setup,
but will typically exhibit behavior that can be abstracted into
a limited set of opponent models. Our previous research has
shown that even in complex RTS games such as Spring, accurate
models of the opponent player can be established [29]. There-
fore, we will follow the expert opinion that game AI should not
be focused so much on directly exploiting current game obser-
vations, but should rather focus on effectively applying models
of the opponent in actual game circumstances [22].

In addition, we found the case-based adaptive game AI to be
able to uphold a tie for a sustained period of time, while main-
taining a relatively low variance in the targeted fitness value.
This ability may be regarded as a straightforward form of diffi-
culty scaling. If a metric can be established that represents the
preferred level of challenge for the human player, then in theory
the case-based adaptive game AI would be capable of scaling
the difficulty level to the human player. Such a capability pro-
vides an interesting challenge for future research.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we discussed an approach to adaptive game AI
capable of adapting rapidly and reliably to game circumstances.
Our approach can be classified in the area of case-based adap-
tive game AI. In the approach, domain knowledge required to
adapt to game circumstances is gathered automatically by the
game AI, and is exploited immediately (i.e., without trials and
without resource-intensive learning) to evoke effective behavior
in a controlled manner in online play. Results of experiments
that test the approach on three different maps in the Spring game
show that case-based adaptive game AI can successfully obtain
effective performance, and is capable of upholding a tie for a
sustained period of time. From these results, we may conclude
that the proposed case-based adaptive game AI provides a strong
basis for effectively adapting game AI in actual video games.

For future work, we will extend the established case-based
adaptive game AI with a means to scale the difficulty level to
the human player. Subsequently, we will investigate how our
approach to rapidly and reliably adapting game AI can be im-
proved by incorporating opponent models.

APPENDIX

In this appendix, we describe the 27 parameters of strategic
behavior that were used in our experiments.

• AIRCRAFT_RATE: determines how many air units AAI
will build (a value of 7 means that every seventh unit will
be an air unit; a value of 1 means that constructing air units
is disabled).

• AIR_DEFENSE: how often air defense units will be built.
• FAST_UNITS_RATE: determines the amount of units that

will be selected taking their maximum speed into account
( 25%).

• HIGH_RANGE_UNITS_RATE: determines the amount
of units that will be selected taking weapons range into
account ( 25%).

• MAX_AIR_GROUP_SIZE: maximum air group size.
• MAX_ANTI_AIR_GROUP_SIZE: maximum size of

anti-air groups (ground, hover, or sea).
• MAX_ASSISTANTS: maximum number of builders as-

sisting construction of other units/buildings.
• MAX_BASE_SIZE: maximum base size in sectors.
• MAX_BUILDERS: maximum builders used at the same

time
• MAX_BUILDERS_PER_TYPE: how many builders of a

certain type may be built.
• MAX_DEFENSES: maximum number of defenses AAI

will build in a sector.
• MAX_FACTORIES_PER_TYPE: how many factories of

a certain type may be built.
• MAX_GROUP_SIZE: maximum group size; AAI will

create additional groups if all groups of a certain type are
full.

• MAX_METAL_COST: maximum metal cost; units that
cost more metal will not be built.

• MAX_METAL_MAKERS: maximum number of metal
makers; set to 0 if you want to disable usage of metal
makers.

• MAX_MEX_DISTANCE: tells AAI how many sectors
away from its main base it is allowed to build metal
extractors.

• MAX_MEX_DEFENSE_DISTANCE: maximum dis-
tance to base where AAI defends metal extractors with
cheap defense buildings.

• MAX_SCOUTS: maximum scouts used at the same time.
• MAX_STAT_ARTY: maximum number of stationary ar-

tillery (e.g., big-bertha artillery).
• MAX_STORAGE: maximum number of storage build-

ings.
• MIN_AIR_SUPPORT_EFFICIENCY: minimum effi-

ciency of an enemy unit to call for air support.
• MIN_ASSISTANCE_BUILDSPEED: minimum worker-

time/buildspeed of a unit to be taken into account when.
• MIN_FACTORIES_FOR_DEFENSES: AAI will not start

to build stationary defenses before it has built at least that
number of factories.

• MIN_FACTORIES_FOR_STORAGE: AAI will not start
to build stationary defenses before it has built at least that
number of storage buildings.

• MIN_FACTORIES_FOR_RADAR_JAMMER: AAI will
not start to build stationary defenses before it has built at
least that number of radars and jammers.

• MIN_SECTOR_THREAT: the higher the value, the earlier
AAI will stop to build further defenses (if it has not already
reached the maximum number of defenses per sector).

• UNIT_SPEED_SUBGROUPS: AAI sorts units of the
same category (e.g., ground assault units) into different
groups according to their max speed (so that slow and
fast units are in different groups to prevent the slower
ones from arriving in combat much later). This parameter
indicates how many different groups will be made.
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