Rapid Adaptation of Video Game Al

Sander Bakkes, Pieter Spronck, and Jaap van den Herik

Abstract— Current approaches to adaptive game Al require
either a high quality of utilised domain knowledge, or a large
number of adaptation trials. These requirements hamper the
goal of rapidly adapting game Al to changing circumstances. In
an alternative, novel approach, domain knowledge is gathered
automatically by the game Al and is immediately (i.e., without
trials and without resource-intensive learning) utilised to evoke
effective behaviour. In this paper we discuss this approach,
called ‘rapidly adaptive game AI’. We perform experiments that
apply the approach in an actual video game. From our results
we may conclude that rapidly adaptive game Al provides a
strong basis for effectively adapting game Al in actual video
games.

I. INTRODUCTION

Over the last decades, modern video games have become
increasingly realistic with regard to visual and auditory pre-
sentation. However, game Al has not reached a high degree
of realism yet. Game Al is typically based on non-adaptive
techniques [1]. A major disadvantage of non-adaptive game
Al is that once a weakness is discovered, nothing stops the
human player from exploiting the discovery. The disadvan-
tage can be resolved by endowing game AI with adaptive
behaviour, i.e., the ability to learn from mistakes. Adaptive
game Al can be established by using machine-learning
techniques, such as artificial neural networks or evolutionary
algorithms. In practice, adaptive game Al in video games
is seldom implemented because machine-learning techniques
typically require numerous trials to learn effective behaviour.
To allow rapid adaptation in games, we describe a means of
rapid adaptation that is inspired by the human capability to
solve problems by generalising over previous observations in
a restricted problem domain.

The outline of this paper is as follows. First, we discuss
related work in the field of adaptive game AI. Then, we
discuss our approach to establish rapidly adaptive game
Al Subsequently, we describe an implementation of rapidly
adaptive game AIl. Next, we describe the experiments that
test rapidly adaptive game Al in an actual video game,
followed by a discussion of the experimental results. Finally,
we provide conclusions and describe future work.

II. RELATED WORK

In this section we discuss related work with regard to (A)
entertainment and game Al, and (B) difficulty scaling.

Sander Bakkes, Pieter Spronck and Jaap van den Herik are affiliated
to the Tilburg centre for Creative Computing (TiCC), Tilburg University,
The Netherlands (phone: +31 13 466 8118; fax: +31 13 466 2892 ; email:
{s.bakkes, p.spronck, h.j.vdnherik}@uvt.nl).

978-1-4244-2974-5/08/$25.00 ©2008 IEEE

79

A. Entertainment and Game Al

The purpose of a typical video game is to provide enter-
tainment [1], [2]. Of course, the criteria of what makes a
game entertaining may depend on who is playing the game.
Literature suggests the concept of immersion as a general
measure of entertainment [3], [4]. Immersion concerns evok-
ing an immersed feeling with a video game, thereby retaining
a player’s interest in the game. As such, an entertaining
game should at the very least not repel the feeling of
immersion from the player [5]. Aesthetical elements of a
video game, such as graphics, narrative, and rewards, are
instrumental in establishing an immersive game-environment.
Once established, the game environment needs to uphold
some form of consistency for the player to remain immersed
within it [5].

The task for game Al is to control game characters in
such a way that behaviour exhibited by the characters is
consistent within the game environment. In a realistic game
environment, realistic character behaviour is expected. As a
result, game Al that is solely focused on exhibiting the most
effective behaviour is not necessarily regarded as realistic.
For instance, in a typical first-person shooter (FPS) game it
is not realistic if characters controlled by game Al aim with
an accuracy of one hundred per cent. Game Al for shooter
games, in practice, is designed to make intentional mistakes,
such as warning the player of an opponent character’s
whereabouts by intentionally missing the first shot [6].

Consistency of computer-controlled characters within a
game environment is often established with tricks and cheats.
For instance, in the game HALF-LIFE, tricks were used to
establish the illusion of collaborative teamwork [5], causing
human players to assume intelligence where none existed
[6]. While it is true that tricks and cheats may be required
to uphold consistency of the game environment, they of-
ten are implemented only to compensate for the lack of
sophistication in game AI [7]. In practice, game Al in
most complex games still is not consistent within the game
environment, and exhibits what has been called ‘artificial
stupidity’ [6] rather than artificial intelligence. To increase
game consistency, and thus the entertainment value of a
video game, in our research we foremost strive to create an
optimally playing game Al, as suggested by Buro and Furtak
[7]. In complex video games, such as real-time strategy
(RTS) games, near-optimal game Al is seen as the only way
to obtain consistency of the game environment [5].

B. Difficulty Scaling

Difficulty scaling is the automatic adaptation of a game,
to adapt the challenge a game poses to the skills of a human
player [8]. When applied to game Al, difficulty scaling

usually aims at achieving an “even game”, i.e., a game
wherein the playing strength of the computer and the human
player match.

Once near-optimal game Al is established, difficulty-
scaling techniques can be applied to downgrade the playing-
strength of game Al, to ensure that a suitable challenge is
created for the player. Many researchers and game developers
consider game Al, in general, to be entertaining when it is
difficult to defeat [9]. Although for strong players that may
be true, novice players will not enjoy being overwhelmed by
the computer. For novice players, a game is most entertaining
when the game is challenging but beatable [10].

The only means of difficulty scaling implemented in many
games, is typically provided by a “difficulty setting”, i.e., a
discrete parameter that determines how difficult the game
will be. The purpose of a difficulty setting is to allow both
novice and experienced players to enjoy the appropriate
challenge the game offers. Usually the parameter influences
opponents’ strength and health. Very rarely the parameter
influences opponents’ tactics. Consequently, even on a “hard”
difficulty setting, opponents exhibit inferior behaviour, de-
spite their high physical strength and health. In addition, it
is hard for the player to estimate reliably the difficulty level
that is appropriate for himself. Finally, difficulty settings are
discrete, which implies that they cannot possibly be fine-
tuned to be appropriate for each player.

In recent years, researchers have developed advanced
techniques for difficulty scaling of game AI. Hunicke and
Chapman [11] explore difficulty scaling by controlling the
game environment (i.e., the number of weapons and power-
ups available to a player). Demasi and Cruz [12] use coevolu-
tionary algorithms to gradually teach game characters how to
behave. Spronck [8] uses weights assigned to possible game
actions, to determine dynamically whether or not predictably
strong game actions should be executed.

III. APPROACH

For game Al to be challenging, as well as consistent with
the game environment in which it is situated, it needs the
ability to adapt adequately to changing circumstances. Game
Al with this ability is called ‘adaptive game AI’. Typically,
adaptive game Al is implemented for performing adaptation
of the game Al in an online and computer-controlled fashion.
Improved behaviour is established by continuously making
(small) adaptations to the game Al. To adapt to circumstances
in the current game, the adaptation process typically is based
only on observations of current gameplay. This approach to
adaptive game Al may be used to improve significantly the
quality of game AI by endowing it with the capability of
adapting its behaviour while the game is in progress. For in-
stance, the approach has been successfully applied to simple
video games [13], [14], and to complex video games [15].
However, this appproach to adaptive game Al requires either
(1) a high quality of the utilised domain knowledge, or (2)
a large number of adaptation trials. These two requirements
hamper the goal of achieving rapidly adaptive game Al.

Case Base

Observations ‘ '
h

i

Evaluation
Function

Adaptation
Mechanism

Opponent
Model

[1]

Game Al »| Game Character [« > Qame
Environment
Fig. 1. Rapidly adaptive game Al (see text for details).

To achieve rapidly adaptive game Al, we propose an
alternative, novel approach to adaptive game Al that comes
without the hampering requirements of typical adaptive game
Al. The approach is coined ’rapidly adaptive game AI.
We define rapidly adaptive game AI as an approach to
game Al where domain knowledge is gathered automatically
by the game Al, and is immediately (i.e., without trials
and without resource-intensive learning) utilised to evoke
effective behaviour. The approach, illustrated in Figure 1,
implements a direct feedback loop for control of characters
operating in the game environment. The behaviour of a game
character is determined by the game Al. Each game character
feeds the game AI with data on its current situation, and
with the observed results of its actions. The game Al adapts
by processing the observed results, and generates actions in
response to the character’s current situation. An adaptation
mechanism is incorporated to determine how to best adapt
the game AIl. For instance, reinforcement learning may be
applied to assign rewards and penalties to certain behaviour
exhibited by the game Al

For rapid adaption, the feedback loop is extended by (1)
explicitly processing observations from the game Al, and (2)
allowing the use of game-environment attributes which are
not directly observed by the game character (e.g., observa-
tions of team-mates). Inspired by the case-based reasoning
paradigm, the approach collects character observations and
game environment observations, and extracts from those a
case base. The case base contains all observations relevant for
the adaptive game Al, without redundancies, time-stamped,
and structured in a standard format for rapid access. To
rapidly adapt to circumstances in the current game, the
adaptation process is based on domain knowledge drawn
from observations of a multitude of games. The domain
knowledge gathered in a case base is typically used to extract
models of game behaviour, but can also directly be utilised
to adapt the Al to game circumstances. In our proposal of

80 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

Fig. 2.
airplane units are flying over the terrain.

Screenshot of the SPRING game environment. In the screenshot,

rapidly adaptive game Al, the case base is used to extract an
evaluation function and opponent models. Subsequently, the
evaluation function and opponent models are incorporated in
an adaptation mechanism that directly utilises the gathered
cases.

The approach to rapidly adaptive Al is inspired by the
human capability to reason reliably on a preferred course of
action with only a few observations on the problem domain.
Following from the complexity of modern video games,
game observations should, for effective and rapid use, (1)
be represented in such a way that stored cases can be reused
for previously unconsidered situations, and (2) be compactly
stored in terms of the amount of retrievable cases [16]. As
far as we know, rapidly adaptive game Al has not yet been
implemented in an actual video game.

IV. IMPLEMENTATION

This section discusses our implementation of rapidly
adaptive game Al. We subsequently discuss (A) the game
environment in which we implement rapidly adaptive game
Al, (B) the established evaluation function, and (C) an
adaptation mechanism inspired by the case-based reasoning
paradigm. Previously established opponent models [17] will
be incorporated in future research.

A. Game Environment

The game environment in which we implement rapidly
adaptive game Al, is the actual video game SPRING [18].
SPRING, illustrated in Figure 2, is a typical and open-source
RTS game, in which a player needs to gather resources for
the construction of units and buildings. The aim of the game
is to use the constructed units and buildings to defeat an
enemy army in a real-time battle. A SPRING game is won
by the player who first destroys the opponent’s ‘Commander’
unit.

Modern RTS games typically progress through several
distinct phases as players perform research and create new
buildings that provide them with new capabilities. The phase
of a game can be straightforwardly derived from the observed
traversal through the game’s tech tree. A tech tree is a

directed graph without cycles that models the possible paths
of research a player can take within the game. Traversing the
tech tree is (almost) always advantageous, yet there is a cost
for doing so in time and game resources. In SPRING, three
levels of technology are available. At the start of the game,
a player can only construct Level 1 structures and Level 1
units. Later in the game, after the player has performed the
required research, advanced structures and units of Level 2
and Level 3 become available.

B. Evaluation Function

To exhibit behaviour consistent within the game environ-
ment presented by modern video games, game Al needs the
ability to assess accurately the current situation. This requires
an appropriate evaluation function. The high complexity of
modern video games makes the task to generate such an
evaluation function for game Al a difficult one.

In previous research we discussed an approach to gen-
erate automatically an evaluation function for game Al in
RTS games [19]. The approach incorporated TD (Temporal
Difference) learning [20] to learn unit-type weights for the
evaluation function, to reflect the actual playing strength of
each unit type. Our evaluation function for the game’s state
is denoted by

v(p) = wpvy + (1 — wp)ve €))

where w, € [0...1] is a free parameter to determine the
weight of each term v,, of the evaluation function, and p € N
is a parameter that represents the current phase of the game.
Our evaluation function incorporates two evaluative terms,
the term v; that represents the material strength and the term
vg that represents the Commander safety.

Previous research performed in the SPRING environment
has shown that the accuracy of situation assessments are
closely related to the phase of the game in which they are
made [21]. To distinguish phases of the SPRING game, we
map tech levels to game phases and distinguish between
when tech levels are “new,” and when they are “mature,” as
indicated by the presence of units with a long construction
time. This leads us to define the following five game phases.

o Phase 1: Level 1 structures observed.

o Phase 2: Level 1 units observed that have a build time
> 2,500.

o Phase 3: Level 2 structures observed.

o Phase 4: Level 2 units observed that have a build time
> 15,000.

o Phase 5: Level 3 units or Level 3 structures observed.

Results of experiments to test the established evaluation
function showed that just before the game’s end, the es-
tablished evaluation function is able to predict correctly the
outcome of the game with an accuracy that approaches one
hundred per cent. Note that this is not a trivial result, for
two reasons. First, the evaluation function is tuned to make
predictions that are good during a large part of the game, not
only at the end, and hence it will trade prediction accuracy
at the end of the game for higher prediction accuracy earlier

2008 IEEE Symposium on Computational Intelligence and Games (CIG'08) 81

in the game. Second, if the goal of the game was to destroy
all the opponent’s units, a correct prediction would be easy
to make at the end. However, the goal is to destroy the
opponent’s Commander, and we found that it sometimes
happens that a player who is behind in material strength
can win, often because the opponent’s Commander makes a
high-risk move, such as attacking strong enemy units on its
own. An evaluation function that is based on comparison of
material strength and Commander safety cannot take such
moves into account other than allowing for their general
statistical likelihood.

In addition, experimental results showed that the evalu-
ation function predicts ultimate wins and losses accurately
before half of the game is played. From these results, we
concluded that the established evaluation function effec-
tively predicts the outcome of a SPRING game and that
the proposed approach is suitable for generating evaluation
functions for highly complex video games, such as RTS
games. Therefore, we incorporate the established evaluation
function in the implementation of our rapidly adaptive game
Al

C. Adaptation Mechanism

In our approach, domain knowledge collected in a case
base is utilised for adapting game AI. To generalise over
observations with the problem domain, the adaptation mecha-
nism incorporates an offline means to index collected games,
and performs an offline clustering of observations. To ensure
that game Al is effective from the onset of a game, it
is initialised with a previously observed, successful game
strategy. For online action selection, a similarity matching is
performed that considers six experimentally determined fea-
tures. The adaptation mechanism is algorithmically described
below, and is subsequently discussed in detail.

// Offline processing
Al. Game indexing;
stored games.

A2. Clustering of observations;
similar observations.

calculate indexes for all

group together

// Initialisation of game Al

B1. Establish the (most likely)
opponent player.

B2. Determine in which parameter—band values
this opponent strategy can be abstracted.

B3. Initialise game AI with an effective strategy
observed against the opponent with the most
similar parameter—band values.

strategy of the

// Online action selection

C1. Use game indexes to select the N most similar
games .

C2. Of the selected N games, select the M games
that Dbest satisfy the goal criterion.

C3. Of the selected M games, select the most

similar observation.
C4. Perform the action stored for the
observation.

selected

Game indexing (Al): We define a game’s index as
a vector of fitness values, containing one entry for each
time step. These fitness values represent the desirability of
all observed game states. To calculate the fitness value of

an observed game state, we use the previously established
evaluation function (denoted in Equation 1). Game index-
ing is supportive for later action selection, and as it is a
computationally-expensive procedure, it is performed offline.

Clustering of observations (A2): As an initial means
to cluster similar observations, we apply the standard k-
means clustering algorithm [22]. The metric that expresses
an observation’s position in the cluster space is comprised
of a weighted sum of the six observational features that also
are applied for similarity matching. Clustering of observa-
tions is supportive for later action selection, and as it is a
computationally-expensive procedure, it is performed offline.

Similarity matching (A2 and C3): To compare a given
observation with another, we define six observational fea-
tures, namely (1) phase of the game, (2) material strength,
(3) commander safety, (4) positions captured, (5) economical
strength, and (6) unit count. Similarity is defined by a
weighted sum of the absolute difference in features values.
The weighted sum for both clustering of observations and
similarity matching is calculated as follows:

similarity = ((1 + diff(phase-of_the_game))
(0.5 * diff (unit_count)))

diff (material_strength)

diff (commander_sa fety)

diff (positions_captured)

+ o+ o

diff (economical_strength)

As observations are clustered, calculating the similarity be-
tween observations is relatively computationally-inexpensive.
This is important, as similarity matching must be performed
online.

Initialisation of game AI (B1-B3): To intelligently select
the strategy initially followed by the game AI, we first
determine which strategy the opponent is likely to use. In
our game environment, perfect information of the opponent
is available when loading the opponent game Al (i.e., the
settings of all opponent parameters, indicating the strategic
preferences, are known). We use this information to deter-
mine the initial strategy of the game Al. In a typical game-
playing setting, however, such information is not directly
available, but has to be established via statistical learning
teachniques such as opponent modeling. This will be in-
vestigated in future work. When the opponent strategy has
been established, we determine in which parameter bands
[23] the opponent strategy can be abstracted. We define three
bands for each parameter, ‘low’, ‘medium’ and ‘high’. We
subsequently initialise the game Al with an effective strategy
observed against the most similar opponent. We consider a
strategy effective when in previous play it achieved a set goal
criterion (thus, the game AI will never be initialised with
a predictably ineffective strategy), and consider opponents
strictly similar when the observed values of the parameter
bands are identical.

Action selection (C1-C4): Using the established game in-
dexes, we select the N games with the smallest accumulated
fitness difference with the current game, up until the current
observation. Subsequently, of the selected N games, we

82 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

perform the game action of the most similar observation of
the M games that satisfy a particular goal criterion. The goal
criterium can be any metric to represent preferred behaviour.
For instance, a preferred fitness value of 0 can represent
challenging gameplay, as this implies that players are equally
matched. Naturally, we have to consider that performing
actions associated to similar observations may not yield the
same outcome when applied to the current state. Therefore, to
estimate the effect of performing the retrieved game action,
we straightforwardly compensate for the difference in metric
value between the current and the selected observation.

V. EXPERIMENTS

This section discusses experiments that test our implemen-
tation of rapidly adaptive game AI. We first describe the
experimental setup and the performance evaluation, and then
the experimental results.

A. Experimental Setup

To test our implementation we start collecting observations
of games where two game Als are posed against each other.
Multiple SPRING game Als are available. We found one
open-source game Al, which the author called ‘AAI’ [24].
We enhanced this game Al with the ability to collect game
observations in a case base, and the ability to disregard radar
visibility so that perfect information on the environment was
available. As opposing player, we used the original AAI
game Al. We found 27 parameters that define the strategic
behaviour of the game Al. The concerning parameters deter-
mine the game strategy on a high, strategic level, and not so
much on a low, tactical level. The parameters are described
in the Appendix.

For collecting observation, we simulate different players
competing with different players, by for each game pseudo-
randomising the strategic parameters of both players. This
results in randomly generated strategic variations of pre-
dictably reasonable behaviour (and not fully random strategic
behaviour). The collection process was as follows. During
each game, game observations were collected every 127
game cycles, which corresponds to the update frequency of
AAI With the SPRING game operating at 30 game cycles per
second, this resulted in game observations being collected
every 4.233 seconds.

We acknowledge that the amount of offline storage should
be low for our approach to be considered practical for
implementation in a game-production setting. We therefore
store game observations in a lightweight fashion, by for
each game observation only abstracting the position and
unit-type of each unit. This abstraction, of approximately
3 KB per observation, provides a powerful basis for deriving
observational features. Accordingly, a case base was built
from 213.005 observations of 325 games, resulting in case
base consisting of 679 MB of uncompressed observational
data. Approaches are available to further reduce the size
of the case base, such as offline data compression and
subsequent online data decompression [25] and automatic

Fig. 3. Two game AD’s pitted against each other on the map ‘SmallDivide’.
In the screenshot, the white player has captured the centre position.

condensation of the case base [26], however these lie outside
the scope of the present research.

We collect observations from games played on the map
‘SmallDivide’. This map is also used for adaptation experi-
ments. The map, illustrated in Figure 3, is a symmetrical map
without water areas. All games are played under identical
starting conditions.

For offline clustering of observations, k is set to ten per
cent of the total number of observations. Before the game
starts, the initial strategy is determined. While the game is
in progress, action selection is performed at every phase
transition. The parameter N for action selection is set to
50, and the parameter M is set to 5. The game action
is expressed by the configuration of the 27 parameters of
strategic behaviour.

B. Performance Evaluation

To evaluate the performance of the rapidly adaptive game
Al, we determine to what extent it is capable of adapting
effectively to game circumstances. We perform three differ-
ent experiments. First, we test to what extent the rapidly
adaptive game Al is capable of adapting to the original
AAI game Al, set to play in a medium playing strength.
Second, we test to what extent the rapidly adaptive game Al
is capable of adapting to previously unobserved opponents,
which is simulated by pitting the game Al against the original
AAI game Al, initialised with randomly generated strategies.
Third, as a form of difficulty scaling, we test to what extent
the rapidly adaptive game Al is capable of upholding a tie
when pitted against the original AAI game Al, also set to
play in a medium playing strength.

For each of the first two experiments, we perform a trial
where the rapidly adaptive game Al is set to win the game
(i.e., obtain a positive fitness value). For the third experiment,
we set the rapidly adaptive game AI to uphold a tie (i.e,
maintain a fitness value of 0, while never obtaining a fitness

2008 IEEE Symposium on Computational Intelligence and Games (CIG'08) 83

TABLE 1
EFFECTIVENESS OF RAPIDLY ADAPTIVE GAME Al

Opponent #Games | Goal achv. | Goal achv. (%) | Impr. (%)
Original AAI 25 20 80% 30%
Random 100 58 58% 8%
TABLE II

UPHOLDING A TIE WITH RAPIDLY ADAPTIVE GAME Al.

Opponent #Games | Time to uphold tie | Variance in fitness
Original AAI 25 37 min. (15 min.) 2.04 (0.59)
Random 100 35 min. (13 min.) 2.00 (0.82)

value less than -10, or greater than 10). To measure how well
the rapidly adaptive game Al is able to maintain a fitness
value of 0, the variance in fitness value is calculated. A low
variance implies that the rapidly adaptive game Al has the
ability to consistently maintain a predefined fitness value.
All experimental trials are repeated 25 times, except the
trial where the rapidly adaptive game Al is pitted against
randomly generated opponents, which is repeated 100 times.

C. Results of Game Adaptation

Table I gives an overview of the results of the first and
second experiments performed in the SPRING game. The
experiments concerned the adaptation ability of the rapidly
adaptive game Al The results presented in the first row of the
table reveal that when pitted against the original AAI game
Al set to play in a medium playing strength, the rapidly
adaptive game Al effectively obtains a victory (80% of the
experimental runs). This result indicates that rapidly adaptive
game Al is effective in play against the original AAI game
Al Figure 4 displays the obtained fitness value as a function
over time of two typical experimental runs.

In addition, the results presented in the second row of
the concerning table reveal that when pitted against the
original AAI game Al, initialised with randomly generated
strategies, the rapidly adaptive game Al improves on the
effectiveness of strictly randomised games played without
adaptation mechanism (i.e., a verified effectiveness of 50%).
The obtained improvement in effectiveness is 8%. This result
indicates that even in randomised play against the AAI game
Al, the rapidly adaptive game Al is able to find effective
strategies in the case-base.

D. Results of Difficulty Scaling

Table II gives an overview of the results of the third
experiment. The experiment concerned the difficulty scaling
ability of the rapidly adaptive game Al. The results presented
in this table reveal that when pitted against the original
AAI opponent, the rapidly adaptive game Al is capable of
upholding a tie for a relatively long time (37 minutes on
average), while at the same time maintaining a relatively
low variance in the fitness value that is strived for (2.04 on
average).

Comparable difficulty scaling results are obtained when
the rapidly adaptive game Al pitted against the opponents

with randomly generated strategies. The table reveals that
when pitted against opponents with randomly generated
strategies, the rapidly adaptive game Al is able to uphold a
tie for a relatively long time (35 minutes on average), while
at the same time maintaining a relatively low variance in the
fitness value that is strived for (2.00 on average).

VI. DISCUSSION

In the experiments that test our implementation of rapidly
adaptive game Al, we observed that the game Al was well
able to achieve a victory when pitted against the original
AAI game Al, set to play in a medium playing strength.
We noticed that the rapidly adaptive game AI was able to
find in the case base a strategy that could effectively defeat
the original AAI game Al As the original AAI game Al is
not able to adapt its behaviour, the rapidly adaptive game
Al could exploit its discovery indefinitely. Note that in some
cases, the rapidly adaptive game Al did not win the game,
despite it exhibiting strong behaviour. Such outliers cannot
be avoided due to the inherent randomness that is typical to
video games. For instance, in the SPRING game, the most
powerful unit is able to destroy a Commander unit with a
single shot. Should the Commander be destroyed in such a
way, the question would arise if this was due to bad luck,
or due to an effective strategy of the opponent. For game
Al to be accepted as effective players, one could argue,
recalling the previously mentioned need for consistent Al
behaviour, that game AI should not force a situation that
may be regarded as the result of lucky circumstances.

In addition, we observed that even in play with randomised
strategic parameter-values, the rapidly adaptive game Al is
able to find effective strategies in the case base, and was
thereby able to improve on the randomised performance
by 8%. This is a satisfactory result. As randomised play
may be considered a simulated way to test the game Al
against previously unobserved opponents, naturally, the ques-
tion remains if the performance in randomised play can be
further enhanced. We discuss two approaches to enhance the
performance in play with randomised strategic parameter-
values.

First, note that our case-base currently consists of ob-
servations collected over 325 games. For randomised play,
determined by 27 pseudo-randomised behavioural parame-
ters, it would be beneficial to collect more games in the
case base in order to increase the probability of it containing
effective game strategies. As rapidly adaptive game Al can
be expected to be applied in the playtesting phase of game
development, and predictably in multi-player games, the case
base in practical applications is expected to grow rapidly to
contain a multitude of effective strategies.

Second, we observed that the final outcome of a SPRING
game is largely determined by the actions performed in the
beginning of the game. This exemplifies the importance of
initialising the game AI with effective behaviour. In order
to do so, one needs to accurately determine the opponent
one will be pitted against. In video-game practice, (human)
game opponents do not exhibit behaviour as random as in

84 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

25

fitness value

time step

Fig. 4. Obtained fitness values as a function over time, when pitted against the original AAI game AI. The figure displays a typical experimental result
of (1) the rapidly adaptive game Al set to win the game, and (2) the rapidly adaptive game Al set to uphold a tie.

our experimental setup, but will typically exhibit behaviour
that can be abstracted into a limited set of opponent models.
Previous research has shown that even in complex RTS
games such as SPRING, accurate models of the opponent
player can be established [17]. We will therefore follow the
expert opinion that game Al should not so much be focussed
on directly exploiting current game observations, but should
rather focus on effectively applying models of the opponent
in actual game circumstances [27].

In addition, we found the rapidly adaptive game Al to be
able to uphold a tie for a relatively long time, while at the
same time maintaining a relatively low variance in the fitness
value that is strived for. This ability may be regarded as a
straightforward form of difficulty scaling. If a metric can be
established that represents the preferred level of challenge
for the human player, then in theory the rapidly adaptive
game Al would be capable of scaling the difficulty level to
the human player. Such a capability provides an interesting
challenge for future research.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we discussed an approach to establish
rapidly-adaptive game Al. In the approach, domain knowl-
edge is gathered automatically by the game Al, and is im-
mediately (i.e., without trials and without resource-intensive
learning) utilised to evoke effective behaviour. In our imple-
mentation of the approach, game observations are collected in
a case base. Subsequently, the case base is used to extract an
evaluation function, and gathered cases are directly utilised
by an adaptation mechanism. Results of experiments that test
the approach in the SPRING game show that rapidly adaptive
game Al can effectively obtain a victory and is capable of
upholding a tie for a relatively long time. From these results,
we may conclude that the established rapidly adaptive game
Al provides a strong basis for effectively adapting game Al
in actual video games.

For future work, we will extend the established rapidly
adaptive game Al with a means to scale the difficulty level

to the human player. Subsequently, we will investigate how
our approach to rapidly adapting game Al can be improved
by incorporating opponent models.

APPENDIX

In this appendix, we describe the 27 parameters of strategic
behaviour that were used in our experiments.

o AIRCRAFT_RATE. Determines how many air units AAI will
build (7 means every 7th unit will be an air unit, set to 1 to
disable air units).

« AIR_DEFENCE. How often air defence units will be built.

o FAST_UNITS_RATE. Determines the amount of units that will
be selected taking their maximum speed into account (4 —
25%).

o« HIGH RANGE_UNITS_RATE. Determines the amount of
units that will be selected taking weapons range into account
4 — 25%).

o MAX_AIR_GROUP_SIZE. Maximum air group size.

o MAX_ANTI_AIR_.GROUP_SIZE. Maximum size of anti-air
groups (ground, hover or sea).

o MAX_ASSISTANTS. Maximum number of builders assisting
construction of other units/buildings.

« MAX_BASE_SIZE. Maximum base size in sectors.

« MAX_BUILDERS. Maximum builders used at the same time

« MAX_BUILDERS_PER_TYPE. How many builders of a cer-
tain type may be built.

« MAX_DEFENCES. Maximum number of defences aai will
build in a sector.

« MAX_FACTORIES_PER_TYPE. How many factories of a
certain type may be built.

« MAX_GROUP_SIZE. Maximum group size; aai will create
additional groups if all groups of a certain type are full.

¢ MAX_METAL_COST. Maximum metal cost, units that cost
more metal will not be built.

« MAX_METAL_MAKERS. Maximum number of metal mak-
ers, set to 0 if you want to disable usage of metal makers.

o MAX_MEX _DISTANCE. Tells AAI how many sectors away
from its main base it is allowed to build mexes.

« MAX_MEX _DEFENCE_DISTANCE. Maximum distance to
base where aai defends mexes with cheap defence-buildings.

« MAX_SCOUTS. Maximum scouts used at the same time.

o MAX_STAT_ARTY. Maximum number of stationary artillery
(like berthas).

o MAX_STORAGE. Maximum number of storage buildings.

2008 IEEE Symposium on Computational Intelligence and Games (CIG'08) 85

MIN_AIR_SUPPORT_EFFICIENCY. Minimum efficiency of
an enemy unit to call for air support.
MIN_ASSISTANCE_BUILDSPEED. Minimum workertime /
buildpeed of a unit to be taken into account when.
MIN_FACTORIES_FOR_DEFENCES. AAI will not start to
build stationary defences before it has built at least that
number of factories.

MIN_FACTORIES_FOR_STORAGE. AAI will not start to
build stationary defences before it has built at least that
number of storage buildings.

MIN_FACTORIES _FOR_RADAR_JAMMER. AAI will not
start to build stationary defences before it has built at least
that number of radars and jammers.
MIN_SECTOR_THREAT. The higher the value the earlier AAI
will stop to build further defences (if it has not already reached
the maximum number of defences per sector).
UNIT_SPEED_SUBGROUPS. AAI sorts units of the same
category (e.g. ground assault units) into different groups
according to their max speed (so that slow and fast units are
in different groups to prevent the slower ones from arriving in
combat much later) this indicates how many different groups
will be made (dont set this too high).

ACKNOWLEDGEMENTS

This research is funded by a grant from the Nether-
lands Organization for Scientific Research (NWO grant No
612.066.406) and is performed in the framework of the
ROLEC project.

(1]
(2]
(3]
(4]

(5]

(6]

(71

(8]

REFERENCES

P. Tozour, AI Game Programming Wisdom. Charles River Media,
2002, ch. The Perils of Al Scripting, pp. 541-547.

A. Nareyek, “Al in computer games,” ACM Queue, vol. 1(10), pp.
58-65, 2004.

L. Manovich, The Language of New Media.
Cambridge, Massachusetts, U.S.A., 2002.

L. N. Taylor, “Video games: Perspective, point-of-view, and immer-
sion,” 2002, masters thesis, Graduate Art School, University of Florida,
U.S.A.

R. Laursen and D. Nielsen, “Investigating small scale combat situ-
ations in real-time-strategy computer games,” 2005, master’s thesis,
Department of computer science, University of Aarhus, Denmark.

L. Liden, AI Game Programming Wisdom 2. Charles River Media,
Inc., Hingham, MA, 2004, ch. Artificial Stupidity: The Art of Making
Intentional Mistakes, pp. 41-48.

M. Buro and T. M. Furtak, “RTS games and real-time Al research,”
in Proceedings of the BRIMS Conference. Arlington VA, 2004, pp.
34-41.

P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma, “Difficulty scaling
of game AL” in Proceedings of the GAME-ON 2004: 5th International
Conference on Intelligent Games and Simulation, A. E. Rhalibi and
D. V. Welden, Eds., 2004, pp. 33-37.

The MIT Press,

86

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

M. Buro, “RTS games as a test-bed for real-time AI research,” in
Proceedings of the 7th Joint Conference on Information Science. K.
Chen et. al., 2003, pp. 481-484.

B. Scott, AI Game Programming Wisdom. Charles River Media, Inc.,
2002, ch. The Illusion of Intelligence, pp. 16-20.

R. Hunicke and V. Chapman, “Al for dynamic difficulty adjustment
in games,” in AAAI Workshop on Challenges in Game Artificial
Intelligence. AAAI Press, 2004, pp. 91-96.

P. Demasi and A. J. de O. Cruz, “Anticipating opponent behaviour
using sequential prediction and real-time fuzzy rule learning,” in
Proceedings of the 4th International Conference on Intelligent Games
and Simulation (GAMEON’2004), 2004, pp. 101-105.

——, “Online coevolution for action games,” International Journal of
Intelligent Games and Simulation, vol. 2(3), pp. 80-88, 2002.

S. Johnson, Al Game Programming Wisdom 2. Charles River Media,
Inc., Hingham, MA, 2004, ch. Adaptive Al: A Practical Example, pp.
639-647.

P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma,
“Adaptive game Al with dynamic scripting,” Machine Learning, vol.
63(3), pp. 217-248, 2006.

A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,
methodological variations, and system approaches,” AI Communica-
tions, vol. 7(1), March 1994.

F. Schadd, S. Bakkes, and P. Spronck, “Opponent modeling in real-
time strategy games,” in Proceedings of the GAME-ON 2007, M. Roc-
cetti, Ed., 2007, pp. 61-68.

S. Johansson, J. Cnossen, and T. Kunaver, “Spring game engine,”
2007, [Online]. Available: http://spring.clan-sy.com/

S. Bakkes and P. Spronck, Al Game Programming Wisdom 4. Charles
River Media, Hingham, MA., U.S.A., 2008, ch. Automatically Gener-
ating Score Functions for Strategy Games, pp. 647-658.

R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, pp. 9-44, 1988. [Online].
Available: citeseer.ist.psu.edu/sutton88learning.html

S. Bakkes, P. Spronck, and J. van den Herik, “Phase-dependent
evaluation in rts games,” in Proceedings of the 19th Belgian-Dutch
Conference on Artificial Intelligence (BNAIC), M. M. Dastani and
E. de Jong, Eds. Universiteit Utrecht, The Netherlands, 2007, pp.
3-10.

J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,”
Applied Statistics, vol. 28(1), pp. 100-108, 1979.

R. Evans, AI Game Programming Wisdom. Charles River Media,
2002, ch. Varieties of Learning, pp. 571-575.

A. Seizinger, “AI:AAL” 2006, creator of the game Al ‘AAI’. [Online].
Available: http://spring.clan-sy.com/wiki/AL:AAI

S. Abou-Samra, C. Comair, R. Champagne, S. T. Fam, P. Ghali, S. Lee,
J. Pan, and X. Li, “Data compression/decompression based on pattern
and symbol run length encoding for use in a portable handheld video
game system,” 2002, US Patent 6416410.

F. Angiulli and G. Folino, “Distributed nearest neighbor-based con-
densation of very large data sets,” IEEE Transactions on Knowledge
and Data Engineering, vol. 19(12), pp. 1593-1606, 2007.

S. Rabin, AI Game Programming Wisdom 4. Charles River Media,
Inc., 2008, ch. Preface - What happened to learning?, pp. ix — xi, ISBN
1-584-505230.

2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

