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Abstract— Current approaches to organising units in strate-
gic video games are typically implemented via static formations.
Static formations are not capable of adapting effectively to
opponent tactics. In this paper we discuss an approach to
organising units by learning the effectiveness of a formation in
actual play, and directly applying learned formations according
to the classification of the opponent player. This approach to
establish so-called dynamic formations, is tested in the ORTS
game environment. From our results, we may conclude that the
approach to established dynamic formations can be successfully
applied in actual video-game environments.

I. INTRODUCTION

The effectiveness of Al in video games depends heavily
on how well game characters are able to cooperate and
react to the opponent player. In many video games, this
behaviour is implemented via so-called formations. Today,
formations are expected for any type of cohesive group
behaviour. From squad-based first-person shooters to sport
simulations to real-time strategy game, anytime that a group
is moving or working together it is expected to do so in an
orderly, intelligent fashion [1]. Approaches exist to establish
effective formations. However, these approaches are typically
built upon static techniques. This renders the so established
formations unable to adapt to changing circumstances. To
allow formations to be effective in changing (and unforeseen)
circumstances, in this paper we describe a novel approach to
establish formations dynamically, based on previous experi-
ences with the game.

The outline of this paper is as follows. In Section II we
give background information. In Section III we discuss a gen-
eral framework to establish dynamic formations. Section IV
describes how to incorporate a learning algorithm to select
which dynamic formation to employ best. In Section V we
discuss how to establish and utilise models of the opponent
player for the purpose of effectively applying learned be-
haviour. In Section VI we discuss experiments that test our
approach to dynamic formations in actual play, together with
the experimental results. Section VII provides conclusions
and describes future work.

II. BACKGROUND

In this section we give background information with regard
to (A) formations, (B) learning in video games, and (C) the
ORTS game environment for Al research.
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A. Formations

A formation is defined as an arrangement or disposition
of units [2]. Formations are typically applied for a tactical
purpose, and have already been found in tribal societies such
as the Maori [3]. Commonly seen formations, such as a shield
wall, a phalanx or a wedge, have historical significance and
are still used in modern military operations [1].

Throughout the years, video games grew to encompass
tactical realism to include formations, such as in the popular
game AGE OF EMPIRES III. To establish formations in video
games, there are two approaches that are typically applied
[4]. The first approach deals with fixed formations, in which
each unit is assigned a fixed slot in a predefined formation.
Formations established via this approach are static, which
implies that they are generally unsuitable for unforeseen
circumstances. The second approach deals with emergent
formations, in which formations emerge autonomously from
the interaction of units. The formations established via this
approach, though not static, are difficult to control and to
predict in behaviour.

These typical approaches are not suitable to achieve the
goal of establishing automatically formations that may ef-
fectively be applied in strategic video games, such as RTS
games. To allow formations to be effective even in changing
circumstances, in the sections that follow we discuss a
novel approach to establish formations dynamically, based
on previous experiences with the game.

B. Learning in Video Games

As modern video games present a complex and realistic
environment, one would expect characters controlled by
game Al in such an environment to behave realistically
(‘human-like’) too. One important feature of human-like
behaviour of game Al is the ability to adapt to changing
circumstances. Game Al with this ability is called ‘adaptive
game Al’, and is typically implemented via machine-learning
techniques. Adaptive game Al may be used to significantly
improve the quality of game AI by learning effective be-
haviour while the game is in progress. Adaptive game Al
has been successfully applied to simple video games [5],
[6], and to complex video games [7].

We observe, however, that learning effective behaviour
while the game is in progress (i.e., ‘online’), typically
requires an inefficiently large number of learning trials. It
is not uncommon that a game has finished before effective
behaviour could be established, or that game characters in a
game do not live long enough to benefit from learning. As a
result, it is difficult for players to perceive that game Al in
fact is learning. This renders the benefits of online learning
in video games subjective and unclear [8]. In our approach to



Fig. 1.

Screenshot of the ORTS game environment.

dynamic formations, we therefore focus on learning effective
behaviour in an offline fashion. Subsequently, in actual play
we apply the learned behaviour on the basis of models of
the opponent player.

C. Game Environment

To test our approach, we implemented dynamic formations
into the Open Real Time Strategy (ORTS) game environment
[9]. ORTS, illustrated in Figure 1, is an RTS game environ-
ment designed specifically for Al research. ORTS has five
properties that make it suitable for Al research, namely (1)
it is free software, (2) it uses a flexible game specification,
(3) it enables a hack-free game environment, (4) it offers
total player control, and (5) custom game Als can be used
[10], [11].

Since 2006, an annual ORTS tournament takes place
during the Artificial Intelligence and Interactive Digital En-
tertainment Conference (AIIDE). In the tournament, custom
built game Als compete in different game modes. For our
experiments, we use the so-called fourth game mode of
the annual ORTS tournament. This game mode is focussed
on small-scale tactical combat, unit group management,
and adversarial/cooperative pathfinding. The game mode’s
objective is to destroy as many opponent units as possible
within a timeframe of five minutes. In practice, the game is
finished (i.e., one of the players is annihilated) within these
five minutes.

In the fourth game mode, combat takes place as follows.
Two players are pitted against each other. Each player con-
trols an army consisting of fifty identical game units. Each
unit can fire a shot at an object that is within a predefined
range. After firing a shot, a short cooldown period starts
during which the unit is not able to fire. The map on which
combat takes place is flat. However, the map is populated by
moving obstacles, in the form of sheep that roam the map.
Perfect information of the game environment is available to
all players.

Fig. 2. General design of a dynamic formation.

III. DYNAMIC FORMATIONS

We define a dynamic formation as a group of cooperating
units that are capable of adapting to changing circumstances.
To obtain effective behaviour, in particular the dynamic
formations should be capable of adapting to the formation
of the opponent player. To establish such a capability, in
our view five aspects are required: (A) a dynamic formation
shape (i.e., a non-fixed shape), (B) units in the formation are
positioned properly, (C) units in the formation are capable
of moving as a group, (D) units in the formation select
intelligently which opponent unit to attack, and (E) units in
the formation cooperate in their combat behaviour.

In this section we will define an architecture to establish
formations that meet these requirements. The architecture
allows established formations to be adjusted dynamically by
varying formation parameters.

A. Shape of the Formation

In Figure 2, the general design of a dynamic formation
is illustrated. The architecture allows for numerous dynam-
ically determined shapes of the formation. For instance, a
rectangular shape, a wedge, or a reversed wedge. In our
approach, all computer-controlled units are first divided into
¢ formations. Each formation can have a separate shape,
which is determined as follows. A formation is constructed
from a grid, arranged in lines of positions. The lines in the
grid are placed behind each other. Each line consists of a
fixed number of units . The units on the first line have a
distance o between each other. Any following line will have
a distance  behind its predecessor.

The formation is centered around a so-called leader unit,
which determines the general direction of movement and the
speed of a formation. This leader is a unit that is positioned
in the middle of the first line. The units on the left and on the
right of the leader are positioned a distance of ~ in front, or
behind the leader, depending on the value of ~y. In Table I, an
overview is given of the all parameters to define a formation.

B. Position of the Units

The position of units in the formation is determined
according to their initial location on the map. First, units are
assigned to the ¢ formations according to their x-coordinates.
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TABLE 1
PARAMETERS TO DEFINE THE SHAPE OF A FORMATION.

Parameter Description
First line distance a | The distance between units in the first
line, where « € {5,...,50}.
Horizontal distance 3 | The horizontal distance between differ-
ent lines in the same group, where 3 €
{5,...,50}.
Vertical distance v | The vertical distance between the units
of neighbouring rows, where v €
[-50...50].
Formation speed 0 | The formation speed is the speed at

which the formations should manoeu-
vre, where ¢ € {1,2,3}

The number of different formations the
available unit should be organised into,
where ¢ € {1,...,10}. Units will be
distributed uniformly over the forma-
tions wherever possible.

The number of units on each line of
the formation, where ¢ € {1,...,50}.
Note that if there are less units available
than the given value, only one line will
be created.

The set of rules that determine the op-
ponent selection behaviour. In our im-
plementation, four opponent selection
schemes are available. These are dis-
cussed in Subsection III-D.

The set of rules that determine the em-
ployed combat behaviour. In our im-
plementation, five combat strategies are
available. These are discussed in Sub-
section III-E.

Number of formations | ¢

Units per line P

Opponent selection

Combat behaviour
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Fig. 3.
unit.

Second, units in each group are distributed over the defined
amount of lines, according to their y-coordinates. Third, the
position of an individual unit on a line is assigned according
to the x-coordinate of this unit. To determine the position
of the units via this algorithm is quite efficient, namely
O(nlogn), where n is the number of units.

Naturally, we have to consider that during combat, units in
the formation may be destroyed. To maintain the shape of the
formation, the position of units may need to be adjusted. The
focus on adjusting the position of the units lies on replacing
units from the first lines (the front), with units from the
back. This is done in a computationally inexpensive manner,
by only adjusting the position of neighbouring units. This
process is illustrated in Figure 3, in which a destroyed unit
from the first line is replaced by a neighbouring unit. In
practice, this allows the formation to be adjusted rapidly, as
units only have be slightly repositioned.

C. Movement of the Formation

A computationally inexpensive approach is used to move
the formation as a whole. Our approach to movement of
the formation consists of two steps. First, we calculate the
direction the leader of the formation should move towards.
In our implementation, the leader of a formation will steer
towards the nearest formation of the opponent. Second, we
set the other units in the formation to follow in the direction
parallel to the direction of the leader.

We acknowledge the importance of keeping units in the
formation together. It is possible, however, that units may fall
out of formation, for instance due to obstacles. To ensure
that units remain in formation, in our implementation we
temporarily increase the speed of a unit to enable it to catch
up with the formation, while we temporarily decrease the
speed of the formation as a whole. This is discussed in more
detail in previous work [12].

D. Opponent Selection

Units in the formation should select intelligently which
nearby opponents unit to attack. As a first step to establish
such behaviour, a formation is set to attack the most nearby
opponent formation. To decide what constitutes an opponent
formation is determined by applying a straightforward clus-
tering algorithm. As a second step, individual units in each
formation apply rules to select automatically which opponent
unit to attack. This is implemented via four different schemes
for opponent selection. These four schemes are discussed
below.

« Relative selection: The scheme for relative opponent
selection, illustrated in Figure 4(a), selects for each unit
the opponent with the same relative position as the
concerning unit. This is implemented by mirroring the
position of a unit into the formation of the opponent, and
subsequently calculating which opponent unit is most
near to this mirrored position.

o Leader selection: The scheme for leader opponent se-
lection, illustrated in Figure 4(b), is comparable with the
scheme for relative selection. However, instead of every
unit selecting an opponent unit, only the leader selects
an opponent unit. The other units in the formation will
subsequently adopt the selection of the leader.

o Centre selection: The scheme for centre opponent
selection, illustrated in Figure 4(c), selects for each unit
the opponent unit that is positioned most nearby the
centre of the opponent formation.

o Nearby selection: The scheme for nearby opponent
selection, illustrated in Figure 4(d), selects for each unit
the opponent unit that it is closest to.

E. Combat Behaviour

To determine the behaviour of units in combat with
opponent units, we defined five combat strategies. These five
strategies are discussed below.

¢ Overrun: The overrun combat behaviour will continu-

ously keep on pushing the units towards the opponent
units.
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Fig. 4. Opponent selection schemes. The dynamic formation is located on
the left, the assigned enemy cluster on the right. The number of the selected
opponent is displayed in the unit itself.

o Hold: The hold combat behaviour will make the units
stop moving as long as the opponent units are within
range of their weapons.

o Retreat: The retreat combat behaviour is a so-called
hit and run strategy, in which the units attack the
opponent units, and during the cooldown period retreat
continuously.

« Bounce: The bounce combat behaviour is similar to the
retreat combat strategy. In the bounce combat behaviour,
units will attack the opponent, retreat during half of
the cooldown period, and in anticipation of the end of
the cooldown period, subsequently move towards the
opponent.

« Border: The border combat behaviour ensures that units
are outside the weapons range of the opponent units
during the cooldown period. Once positioned outside of
the weapons range of the opponent units, the units will
stand still until the cooldown period has ended.

IV. LEARNING WHICH FORMATION TO EMPLOY

To determine automatically which formation to employ
in actual play, we incorporate a learning algorithm. The
learning algorithm implements stochastic optimisation [13]
to learn the best parameters to define a formation. For each
parameter, described in Table I, a set of parameter values is
available for the learning algorithm to select. The probability
of a particular parameter value being selected is determined
by the weight assigned to it. Before the learning starts, all
weights are assigned a neutral value of one. During play
of the game, the weights of parameter values are updated
gradually to reflect their actual effectiveness.

The function to update the weights after a game has been
played, is denoted by

Ay = 85— (D

(2

where ), is the update A given to a particular parameter
value v, s is the total number of available values for the
concerning parameter, x is a vector storing all game results,
T, is the fitness value of the n—th game, and ¢ is the learning
rate. The calculation of the fitness value z,,, is denoted by

Ty = Uf — Ug )

where uy is the number of friendly units, and u, is the
number of opponent units.

V. OPPONENT MODELING

An important factor that influences the effectiveness of
a formation, is the formation employed by the opponent. To
make predictions about the behaviour of the opponent, an Al
player can establish an opponent model. Many researchers
point out the importance of modelling the opponent’s be-
haviour [14], [15], [16], [17], [18], [19], and state that oppo-
nent models are sorely needed to deal with the complexities
of state-of-the-art video games [20].

In general, an opponent model is an abstracted description
of a player or of a player’s behaviour in a game [20].
Opponent modeling can be seen as a classification problem,
where data that is collected during the game is classified as
one of the available opponent models. Behaviour of the game
Al is established based on this classification of the opponent.
This approach is similar to approaches that see known
opponent models as stereotypes and an compactification of
observations [21].

In this section, we will first discuss how we establish
models of the opponent. Second, we discuss how we classify
the opponent based on game observations.

A. Modeling the Opponent

We model behaviour of the opponent into a so-called
explicit opponent model. An explicit opponent model is a
model in which only behavioural features are incorporated,
and not the effectiveness of behaviour expressed by these
features. This approach to model an opponent has achieved
good results in previous research [22].

In our implementation, we model three behavioural fea-
tures. These features are discussed below.

o Number of Formations: This feature reflects into how
many formations all units of the opponent have been
organised. The feature value is determined by applying
a straightforward k-means clustering algorithm.

o Unit Distribution: This feature reflects the general
distribution of units over the map. The feature value is
high if the opponent units are distributed over a narrow
but wide area of the map, and the feature value is low
if the opponent units are distributed over a thin but high
area of the map.

« Unit Distance: This feature reflects how densely the
opponent units are positioned near each other. The
feature value is determined by averaging over the dis-
tance between each opponent unit and the most nearby
neighbouring unit.
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The value of each feature of the opponent model is
calculated during the game, just before the units will engage
in combat.

B. Classification of the Opponent

The established models are used to classify opponents
based on actual game observations. The general procedure
is to calculate the likelihood of game observations resulting
from each of the established opponent models. The opponent
model that best explains game observations is selected.

This classification of the opponent consists of five steps.

1) For each opponent feature, calculate the mean sample
value over the total number of observational samples.

2) For each opponent, establish a Gaussian distribution
for each feature.

3) Using Bayes’ theorem [23], [24], determine for each
opponent the likelihood of each feature.

4) Determine the likelihood of each opponent exhibiting
the observed feature values. Because the features are
independent, the likelihood of each feature for each
opponent can be multiplied to determine the combined
likelihood of an opponent.

5) For a specific combination of values for each of the
features, the opponent is classified according to Bayes’
theorem, i.e., by means of normalisation, select the
opponent with the highest likelihood.

A detailed description of these five steps is available in
previous work [12].

VI. EXPERIMENTS

This section discusses experiments that test our imple-
mentation of dynamic formations in the ORTS game envi-
ronment. First, we discuss the experiments to test dynamic
formations, together with the experimental results. Second,
we discuss how well the established opponent models are
able to classify the opponent player. Third, we discuss how
the established opponent models may be applied to adapt
game behaviour.

A. Dynamic Formations

To test our approach, we perform experiments in the
ORTS game environment. An experimental run consists of
200 game trials in which two teams play until one team
is defeated in combat. After each game trial, the learning
mechanism adapts the weights of the formation parameters
(see Section IV). We compared several values for the learning
rate (a ‘normal’ learning rate of 200, a ‘slow’ learning rate
of 500, and a variable learning rate based on convergence),
and found a learning rate o of 200 to learn fast and to have
a relatively low probability of remaining in a local optimum
[12]. In our experiments, we tested a team controlled by
the learning mechanism to establish dynamic formations,
while in competition with six different, qualitatively well-
performing opponents that are developed by several univer-
sity teams. Five of which where submitted to the ORTS
tournament at the AIIDE 2007 conference, and one (UM)
was created by us specifically for these experiments. The six

opponents are ‘Blekinge’, ‘NUS’, ‘UBC’, ‘UM’, ‘WarsawA’
and ‘WarsawB’.! Each of the two teams starts with fifty
identical units. The fitness value that the friendly team can
obtain is in the range {—50...50}, a fitness value of 50
being a perfect score (see Eq. (2)). Each experimental run of
200 game trials is performed three times.

To quantify the performance obtained by learning dynamic
formations, three properties of an experimental run are used:
the absolute performance, the relative performance, and the
turning point. We define the absolute performance as the
number of games won by the learning team. We define the
relative performance as the fitness value obtained by the
learning team. We define the turning point as the game trial
at which the learning team obtains a win-loss ratio of at
least 15 wins against 5 losses in a sliding window of 20.
When the ratio is reached, the probability of the learning
team outperforming the opponent is larger than 98% [25].
Because of the size of the sliding window, the minimum
turning point that can be obtained is 20.

Table II gives an overview of the experimental results.
Figure 5 displays the fitness values that are typically obtained
by the learning team in competition with the six opponents.
We observe that NUS exhibits behaviour that is too strong
to be defeated by learning dynamic formations. This comes
as no surprise, as NUS won the ORTS 2007 tournament
by winning 99% of all played games. Game observations
lead us to believe that the low-level Al of NUS is of such
an outstanding quality, that learning dynamic formations by
itself will not suffice to defeat it.” In play against the other
five opponents, we observe that in all cases both the absolute
performance as well as the relative performance increased
or remained excellent while learning. Subsequently, we ob-
serve that against all opponents turning points could be
achieved, which indicates that behaviour has been learned
to significantly outperform the opponent player. In addition,
the obtained turning points are relatively low, which indicates
that effective dynamic formations are established after a
limited amount of learning trials. From these results, we may
conclude that our approach allows for successful dynamical
formations to be established automatically.

B. Classifying the Opponent

Over the course of all learning trials, feature data is
collected that is used to establish the opponent models.
Feature data is collected just before combat is about to
commence; when the units of the opponent team are still in
formation, and the friendly team is still able to change its own
formation. Using the procedure denoted in Subsection V-B,
we calculate the likelihood of feature values being observed
when competing against a particular opponent. This results

IBlekinge was developed by the Blekinge Institute of Technology (Swe-
den), NUS was developed by the National University of Singapore (Singa-
pore), UBC was developed by the University of British Columbia (Canada),
UM was developed by the University of Maastricht (The Netherlands), and
WarsawA and WarsawB were developed by the Warsaw University (Poland).

>The low-level AI of the NUS opponent optimises player positions by
intelligently and continously monitoring player positions, opponent player
positions and effective cooldown periods.
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TABLE I
RESULTS OF LEARNING DYNAMIC FORMATIONS.

Abs. perf. (1-50)
Average  St. dev.

Abs. perf. (151-200)
Average  St. dev.

Rel. perf. (1-50)
Average

St. dev.

Rel. perf. (151-200)
Average  St. dev.

Turning point
Average  St. dev.

BLEKINGE 48 3 50 0

37.81 7.56

36.57 13.52

22 3

NUS 10 11 6 6

-27.23 26.05

-31.46 21.61

>2007 0

UBC 23

47 2

-3.83 18.04

15.45 8.76

71 31

UM 9

33 7

-11.15 12.20

3.95 11.16

>174 33

WARSAWA 8

22 17

-10.44 13.76

-0.95 16.86

>174 46

WARSAWB 21

9
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-5.43 16.81

17.02 5.49
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Fig. 5. Fitness values typically obtained while learning dynamic formations.

in three models for opponent classification, one for each
feature of the opponent models. Figure 6 illustrates these
likelihoods for opponent classification as a function of the
observed value for each of the three features of the opponent
model. Note that we exclude three of the six opponents in
the opponent model, as we will later test the capability of the
established opponent models to generalise when confronted
with previously unknown opponents.

When classifying the opponents during the course of an
ORTS game, already at the first observation the established
opponent models are able to classify accurately the oppo-
nents (i.e., with a probability that approximates 1.0 in all
cases). From these results, we may conclude that known
opponents are classified accurately.

C. Applying Opponent Models

When in competition against a known opponent, i.e.,
an opponent who’s playing features have been captured in
the opponent models, we can directly employ successful
behaviour that was established by the learning algorithm.
Our previous research has shown that when competing with
known opponents, applying previously learned behaviour
enables a dynamic formation to be effective from the onset
of the game [12].

Moreover, when in competition against a previously un-
known opponent, i.e., an opponent who’s playing features
have not been captured in the opponent models, we can
still apply the established opponent models for the purpose
of improving game behaviour. Namely, unknown opponents
may be similar to known opponents with regard to their
playing features. It may therefore be expected that behaviour
that is successful against one particular opponent, will also
be successful against similar opponents.

In our experiments we observe that the three opponents
which were excluded from the opponent models, all are
classified as most similar to WarsawB. Table III gives
an overview of the experimental results of applying the
behaviour learned in play against WarsawB to the three
unknown opponents. The results reveal that when compet-
ing with UM and WarsawA, in all cases highly effective
formations are established instantly. It may seem that no

2With the ‘>’ symbol we indicate that in at least one run against the
concerning opponent, a turning point was not reached before the learning
ended. In the results this run was processed as having at least the maximum
turning point (200). Therefore, the average turning point over all runs will
be at least the given value.
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Fig. 6. Likelihoods of the three features of the opponent model.

learning of formations is taking place, however the turning
indicates that some learning takes place, though already very
effective behaviour is established at the start. In addition, the
effectiveness of the established dynamic formations does not
degrade during play of the game. These results illustrate that
by incorporating opponent models in a game’s Al, behaviour
can be established that is and remains effective from the onset
of a game.

Naturally, situations may arise where learned behaviour
is ineffective when applied in competition with previously
unknown opponents. As Table III also reveals, this was the
case in the trails against NUS, where directly applying the
learned behaviour was not sufficient to be effective against
NUS. We believe this is a particular case which illustrates
that it is not possible to defeat NUS with only dynamic
formations at hand. Rather, ways to defeat NUS are likely
to be found in the domain of low-level Al In typical
cases, on the other hand, ineffective behaviour is bound to
result from previously unknown opponents exhibiting playing
features that have not yet been captured in the established
opponent models. As a result, learned behaviour should not
be applied directly, but should be adapted according to the
new circumstances. This will be the focus of future research.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we discussed an approach to establish dy-
namic formations. In the approach, dynamic formations are
established via a learning algorithm. Subsequently, models of
the opponent player are created and utilised for the purpose
of applying the learned behaviour. Results of experiments
that test the approach in the ORTS game environment show
that behaviour is learned that is effective against five of the
six employed opponents. Only the strong NUS opponent
exhibited such strong low-level Al that it could not be
defeated by dynamic formations alone. The results reveal that
the established opponent models can accurately classify an
opponent player. This classification, in turn, has been used to
directly apply successful behaviour, in order to create Al that
is effective from the onset of a game. Because the resulting
game adaptation was effective, as well as efficient (when
using opponent models), we may conclude that the estab-
lished approach to dynamic formations can be successfully
incorporated in an actual video-game environment.

For future work, we will investigate how our approach
to apply established opponent models can be extended to
allow for automatically adapting learned behaviour to play
of previously unknown opponents.

APPENDIX

In this appendix, we describe the learned formations that
are employed when competing with the known opponents
Blekinge, UBC and WarsawB.

« Blekinge: First line distance: 35. Horizontal distance:
15. Vertical distance: 6. Formation speed: 1. Number of
formations: 5. Units per line: 25. Opponent selection:
Centre. Combat behaviour: Bounce.

o UBC: First line distance: 25. Horizontal distance: 20.
Vertical distance: 8. Formation speed: 1. Number of
formations: 8. Units per line: 25. Opponent selection:
Centre. Combat behaviour: Bounce.

o WarsawB: First line distance: 30. Horizontal distance:
10. Vertical distance: 2. Formation speed: 1. Number of
formations: 5. Units per line: 50. Opponent selection:
Nearby. Combat behaviour: Retreat.
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