216 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Generating Missions and Spaces for
Adaptable Play Experiences

Joris Dormans and Sander Bakkes

Abstract—This paper investigates strategies to generate levels
for action-adventure games. For this genre, level design is more
critical than for rule-driven genres such as simulation or rogue-like
role-playing games, for which procedural level generation has been
successful in the past. The approach outlined by this article dis-
tinguishes between missions and spaces as two separate structures
that need to be generated in two individual steps. It discusses the
merits of different types of generative grammars for each indi-
vidual step in the process. Notably, the approach acknowledges
that the online generation of levels needs to be tailored strictly to
the actual experience of a player. Therefore, the approach incor-
porates techniques to establish and exploit player models in actual

play.

Index Terms—Game Al, game design, generative grammars,
real-time generated game environments.

I. INTRODUCTION

N THE domain of video games, procedurally generated

content is considered to be of increasing importance to the
computer—game development in the present and in the future;
both offline, for making the game development process more
efficient (design of content such as environments and anima-
tions now consume a major part of the development budget for
most commercial games), and online, for enabling new types
of games based on player-adapted content [1]. In fact, games
with procedurally generated content have been around for some
time.

The classic example of this type of game is Rogue [2], an old
Dungeons & Dragons [3] style ASCII dungeon-crawling game
which levels are generated every time the player starts a new
game. Newer games that use procedural techniques include Di-
ablo [4], Torchlight [5], Spore [6], and MineCraft [7]. The typ-
ical approach of these games can be classified as a brute-force
random algorithm that is tailored to the purpose of generating
level structures that function for the type of game. Often these
algorithms generate a large sample and rely on evaluation func-
tions to select the level that is the most fit [8]. Others evaluate

Manuscript received November 01, 2010; revised March 01, 2011, April 15,
2011; accepted April 21, 2011. Date of publication May 05, 2011; date of current
version September 14, 2011. This work was partially funded by the SIA project
“Smart Systems for Smart Services.”

The authors are with Section Game Development/CREATE-IT Applied Re-
search, Amsterdam University of Applied Sciences (HvA), Amsterdam, The
Netherlands (e-mail: j.dormans@hva.nl; s.c.j.bakkes@hva.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2011.2149523

the level in order to remove areas that turn out to be unreach-
able [9]. One strategy, for example, is to generate a tile map that
is filled with tiles representing solid rock, and to “drill” tunnels
and rooms into the map starting from an entrance. Multiple paths
can be created by drilling into new directions from previously
created locations. The dungeon is then populated with creatures,
traps, and treasures [10]. Another strategy involves zoning the
dungeon into large tiles, generating dungeon rooms in some of
these zones in the next step, and finally connecting the rooms
with a network of corridors [11]. To create game space to rep-
resent wilderness areas cellular automata are used to generate
more organic structures [12].

Although these algorithms have a proven track-record
for the creation of rogue-like games, the gameplay their
output supports does not necessarily translate to the genera-
tion of action-adventure games. Action-adventure games are
story-driven games where exploration, puzzle-solving, con-
ceptual and physical challenges make up the majority of the
gameplay [13]. Compared to simulation games and role-playing
games, action—adventures typically have a relatively simple
set of simulation rules and only a few available power-ups.
These games usually do not have an elaborate leveling system
where character development, expressed in terms of skills and
attributes, is an essential part of the gameplay. Lacking these,
action—adventure games must rely more on level design as its
prime source of gameplay. As a result, a structured learning
curve, clever pacing of action, challenges, and puzzles play
a more prominent role for the levels in an action—adventure
game. A procedure to generate levels for this genre must
include a way to incorporate these elements. It is in a similar
light that Smith ez al. [14] point out that generating levels for
an action-platform game is more difficult, as level design is
also a far more critical aspect of that type of game.

As it turns out, level-design principles, like flow, pacing and
structured learning-curves, are difficult to implement with the
algorithms commonly encountered in rogue-like games. These
algorithms generally cannot express these principles as these
principles mostly operate on larger structures than the individual
dungeon rooms and corridors the algorithms work with. The
level-design principles that we have in mind are principles such
as disguised locks and keys that are typically found in action-ad-
venture games [15]. But also principles akin to those described
by the level design patterns discussed by Hullett and Whitehead
for first-person shooter games [16] which can span entire sec-
tions or levels.

In order to generate game levels informed by such principles
we need to turn to a method that does operate on the same type
of structures these principles operate on. This method is the use
of generative grammars, which are very good at operating on

1943-068X/$26.00 © 2011 IEEE

DORMANS AND BAKKES: GENERATING MISSIONS AND SPACES FOR ADAPTABLE PLAY EXPERIENCES

large abstract structures, and fine detail at the same time. Gener-
ative grammars also have the advantage of generating levels, ac-
cording to the grammar, and must be syntactically correct. This
means that with the right implementation of the grammar, there
is no need to verify its correctness or to select correct levels
from a large generated sample. However, even with the use of
generative grammars, generating good levels is still very hard.
Levels often have a random feel and tend to lack overall struc-
ture. To search simply for a single generative grammar to tackle
all these problems is not sufficient. As we will argue below,
well-designed levels generally have two, instead of one struc-
tures; a level generally consists of a mission and a space.

This paper suggests that both missions and spaces are best
generated separately using types of generative grammars that
suit the particular needs of each structure. As outlined in the
final sections of this paper, the route presented here is to gen-
erate missions first and subsequently generate spaces to accom-
modate these missions. A similar approach was outlined in a
previous paper [17]. However, this paper presents the next it-
eration of the same research. We acknowledge that the online
generation of levels needs to be tailored strictly to the actual ex-
perience of a player. Therefore, the approach incorporates tech-
niques to establish and exploit player models in actual play.

II. BACKGROUND: HIERARCHY OF CHALLENGES

It is common to frame level generation as a spatial problem.
However, a game level is not just a map. Levels offer a struc-
tured experience by setting up a number of tasks for the player
to perform. The way these tasks are structured constitutes an
alternative perspective on how a level functions, a perspective
that can be leveraged for generation of game levels.

There are a few ways to organise these tasks. Cousins [18]
introduces the idea of a hierarchy to order a gameplay experi-
ence. In a detailed analysis of the game Super Mario Sunshine
[19] he divides the experience in five layers, where the top layer
constitutes the whole game. The subsequent layers describe the
individual missions, mission elements, input elements, and pri-
mary elements. The middle layers correspond to player’s plans
and intentions. They correspond with what cognitive science
would call basic level categories for the games actions; these ac-
tions are most accessible to players and would typically be the
same action players would use when describing the gameplay.
The lowest layer represents the actions made possible by the
game mechanics and interface; these correspond with the but-
tons pressed by a player and the resulting actions of the avatar,
such as jumps or simple moves. Cousins stresses the importance
of the quality of these low level actions as the player spends
a lot of time performing them. Using simple metrics Cousins
shows that 55% of primary elements in the four minute session
of Super Mario Sunshine [19] consisted of running forward and
changing direction.

The hierarchy of challenges described by Adams and
Rollings [13] was directly inspired by Cousins’ analysis. How-
ever, where Cousins focuses on individual game sessions, with
the hierarchy of challenges Adams and Rollings try to capture
all possible sessions into one single representation. In this
hierarchy all the game’s challenges are ordered into a layered
structure representing what a player needs to accomplish to

217

complete the game. To build a hierarchy of challenges requires
inside knowledge of the level’s design. Some challenges can
be performed in different order or even simultaneously. At
the lowest level in the hierarchy are the atomic challenges;
the micro actions the player needs to perform to get ahead.
At higher levels in the hierarchy there are goals of individual
sections and missions. At the highest level the game’s ultimate
goal resides. Adams and Rollings discuss the different needs
of visibility among the levels: games need to be very clear
in their high level and atomic level challenges while they
can be less clear for intermediate challenges. They also stress
that presenting a player with simultaneous atomic challenges
considerably increases the game’s difficulty [13].

Creating simultaneous or alternative options in the hierarchy
of challenges leads to a potentially more varied gameplay. How-
ever, this is more difficult in the higher levels of the hierarchy
than it is in the lower levels. The game Deus Ex [20] is a good
illustration of this. In this game the player has to get through a
series of connected missions. Most low level challenges present
the player with options: to deal with a guard the player might use
stealth or violence. As the player progresses she gets to choose
how the game’s protagonist develops his skills; she can choose
to specialize in different strategies to overcome common chal-
lenges. Yet, at the high end of the challenge structure there are
only few options and branches. It is only at the very end of the
game that the player gets to choose between one of three alter-
native endings.

III. MISSIONS AND SPACES

From a detailed study of the level design of the Forest Temple
level of The Legend of Zelda: The Twilight Princess [21] two
different structures emerge that both describe the level (see
Fig. 1). First, there is the geometrical lay-out of the level: the
space. Level space can be abstracted into a network of nodes
and edges to represent rooms and their connections. Second,
there is the series of tasks the player needs to complete in order
to get to the end of the level: the actual mission. The mission
can be represented by a directed graph indicating which tasks
are made available by the completion of a preceding task.
The mission dictates a logical order for the completion of the
tasks, which is independent of the geometric lay-out. As can
been seen in Fig. 1, the mission can be mapped to the game
space. In this case certain parts of the space and the mission
are isomorphic. In particular, in the first section of the level
mission and space correspond rather closely. Isomorphisms
between mission and space is frequently encountered in many
games, but the differences between the two structures are often
just as important.

Level space accommodates the mission and the mission is
mapped onto the space, but otherwise the two are independent
of each other. The same mission can be mapped to many dif-
ferent spaces, and one space can support multiple different mis-
sions. The principles that govern the design of both structures
also differ. A linear mission, in which all tasks can only be com-
pleted in a single, fixed order, can be mapped onto a nonlinear
spatial configuration. Likewise, a nonlinear mission featuring
many parallel challenges and alternative options, can be mapped

218 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

defeat
level-boss

find key

find use find find
monkey #6 boomerang| | monkey #5 master key
o F .

I use l | use || u‘lsle I"“

find
boomerang

defeat

cross gap
(4 monkeys),

find
monkey #3

unlock door’

find key
defeat
monsters

unlock door|

find
monkey #2

unlock door

find key

find key

use bomb l

explore

TOSS QAP [eannrserrmo st r
(8monkeys) | TTmeel

miniboss | ... Bt

monkey #4

P e LR E R
guardian

end

defeat
level-boss

use bomb &|
boomerang

unlock
master door|

cross gap o)
""""" monkey #7
use
boomerang find key
find
find | boomerang
monkey #6
= Yoo defeat
unlock door& boomerang mini-boss
use
find key boomerang
find
monkey #5
........... - o cross gap
j (4 monkeys)|
jump s
boomerang
inlock door.
explore
lefeat use bomb 4
™y guardian
boomerang F
find . defeat

master key monsters

find key

use bomb

monkey #1 I
unlock door

find
monkey #3

Fig. 1. Mission and space in the Forest Temple Level of The Legend of Zelda: The Twilight Princess [21].

on to a strictly linear space, resulting in the player having to
travel back and forth a lot.

Some qualities of a level can be attributed to its mission while
others are a function of its space. For example, in Zelda levels
[22], and indeed in many Nintendo games, it is common strategy
to train the player in the available moves and techniques using
a structure that is also found in martial arts training [23]. Fol-
lowing this structure a player first learns a simple technique in
isolation (the kihon stage), then he repeats the technique in order
to perfect it (the kihon-kata stage). In practicing martial arts this
repetition can be long and tedious; an excellent example of this
can be found in the film Karate Kid where the hero practices
his skills to perfection by performing the same task over and
over again (“wax on, wax off”). Next, the player learns how
different techniques can be combined (the kata stage) before
his real skills are tested in a boss fight (the kumite stage). This
structure can be witnessed in the Forest Temple level. In this
level Link first learns how to use “bomblings” to attack crea-
tures and unblock passages (kikon), he must repeat this feat a
couple of times in order to progress (kihon-kata). He also ob-
tains a special boomerang which he learns to use in a similar
series of relative simple tasks (kihon, kihon-kata). Towards the
end Link must combine bomblings and his boomerang in order
to get to the last monkey, which he needs to reach the last rooms

in the temple (kata), where he must to use the same techniques
to defeat the final level-boss (kumite).

The way these individual moves are learned and are com-
bined into more advanced moves also recalls Cook’s work on
“skill atoms” [24]. He frames a player’s journey through a game
as a chain of learning new skills the player needs to negotiate
the game environment. On the atomic level there is a cycle in
which the player performs an action, such as pressing a button
on the controller, which has an effect simulated in the game. The
feedback of that effect hopefully will lead to an update to the
player’s mental model of the game. Skills need to be practiced
in order to be mastered and are combined into more advanced
skills requiring the mastery of a few prerequisite skills [24].

This structure, that follows a well-defined recipe, and which
is repeated in many dungeons in the same game, and same series
can be summed up as follows: The player enters a dungeon and
works his way through a short series of challenges ending with
an enemy that guards the entrance to the main dungeon. This
series usually sets the tone for the rest of the dungeon. After the
confrontation with the guardian, the player can explore the dun-
geon in multiple directions. Around halfway or two-thirds into
the level the player defeats a midlevel boss and obtains and item
that he will need in order to progress beyond certain obstacles
encountered during the first half. Finally, the player confronts

DORMANS AND BAKKES: GENERATING MISSIONS AND SPACES FOR ADAPTABLE PLAY EXPERIENCES 219

and defeats the level boss with the aid of the acquired item. It
is this types of structures that constitute design principles that
procedural level generation must incorporate in order to suc-
cessfully generate levels suitable for action—adventure games.

The spatial qualities of the Forest Temple are different. Its
basic layout follows a hub-and-spoke layout that provides easy
access to many parts of the temple. The boomerang acts as key
to many locks that can be encountered right from the beginning.
Once it is obtained extra rooms in the temple are unlocked for
the player to explore, a structure frequently found in adventure
games [15].

IV. GENERATIVE GRAMMARS

Before detailing our approach to dynamically generated mis-
sions and game spaces, we introduce the concept of generative
grammars, and provide a discussion on the advantages and ap-
plications of generative grammars.

A. Concept

Generative grammars originate in linguistics where they are
used as a model to describe sets of linguistic phrases [25]. In
theory, a generative grammar can be created that is able to pro-
duce all correct phrases of a language. A generative grammar
typically consists of an alphabet and a set of rules. The alphabet
is a set of symbols the grammar works with. The rules employ
rewrite operations: a rule specifies what symbol can be replaced
by what other symbols to form a new string. For example: a rule
in a grammar might specify that in a string of symbols, symbol
“S” can be replaced by the symbols “ab.” This rule would nor-
mally be written down as “S — ab.” Generative grammars typi-
cally replace the symbol (or group of symbols) on the left-hand
side of the arrow with a symbol or group of symbols on the
right-hand side. Therefore, it is common to refer to the symbols
to be replaced as the left-hand side of the rule and to refer to the
new symbols as the right-hand side.

Some symbols in the alphabet can never be replaced because
there are no rules that specify their replacement. These sym-
bols are called terminals and the convention is to represent them
with lowercase characters. The symbols “a” and “b” in the last
example are terminals. Nonterminals have rules that specify
their replacement and are conventionally represented by up-
percase characters. The symbol “S” from the previous rules
is an example. For a grammar that describes natural language
sentences, terminal symbols might be words, whereas nonter-
minal symbols represent functional word groups, such as noun-
phrases and verb-phrases. The denominator “S” is often used for
a grammar’s start symbol. A generative grammar needs at least
one symbol to replace; it cannot start from nothing. Therefore,
a complete generative grammar also specifies a start symbol.

Grammars like these are used in computer science to create
language and code parsers [26]; they are designed to analyze
and classify language. Moreover, grammars are suited for
predicting [27], and automatically generating language phrases
[28]. We utilize grammars for this latter purpose. It is easy
to see that simple rules can produce quite interesting results
especially when the rules allow for recursion: when the rules
produce nonterminal symbols that can directly or indirectly
result in the application of the same rule recursively. The rule

“S — abS” is an example of a recursive rule and will produce
endless strings of ab’s. The rule “S — aSb” is another example
and generates a string of a’s followed by an equal number
of b’s. Generative grammars developed for natural languages
are capable of capturing concepts that transcend the level of
individual words, such as the generation of stories [29], which
suggests that generative grammars developed for games should
be able to capture higher level design principles that lead to
interesting levels at both micro and macro scopes.

Generative grammars can be used to describe games when the
alphabet of the grammar consists of a series of symbols to repre-
sent game specific concepts, and the rules define sensible ways
in which these concepts can be combined to create well-formed
levels. A grammar that describes the possible levels of an ad-
venture game, for example, might include the terminal sym-
bols “key,” “lock,” “room,” “monster,” and “treasure.” While
the rules for that grammar might include:

1) dungeon — obstacle + treasure;

2) obstacle — key + obstacle + lock + obstacle;
3) obstacle — monster + obstacle;
4) obstacle — room.
In this case, when multiple rules specify possible replace-
ments for the same nonterminal symbol, only one rule will be se-
lected. This can be done (pseudo)randomly. The rules can gen-
erate a wide variety of strings including:
1) key + monster 4+ room + lock 4+ monster + room +
treasure;

2) key + monster + key + room + lock + monster 4+ room
+ lock + room + treasure;

3) room 4 treasure;

4) monster + monster + monster + monster + room +
treasure.

The strings produced by the grammar discussed above are not
all suited for a game level. For instance, string 3 is too short (and
uninteresting) even in the limited example above. The problem
stems not from generative grammars as such, but from quality
of the rules that are used in the example. In fact, generative
grammar can easily counter these problems by creating rules
that capture level design principles better, such as:

1) dungeon — obstacle + obstacle + obstacle + obstacle +

treasure;
2) dungeon — threshold guardian + obstacle 4+ mini-boss +
reward + obstacle + level-boss + treasure.

Where rule 1 incorporates the idea that a dungeon needs to
have a minimal length to be interesting at all, and rule 2 directly
incorporates a three act story structure like the one described for
Forest Temple level of Zelda: The Twilight Princess [21] above.

B. Advantages, Disadvantages, and Applications

Generative grammars can be used in different ways to
produce content for games. Game experts and designers can
produce a grammar to generate content for a particular game.
Drafting such a grammar would by no means be an easy task,
but the initial effort vastly outweighs the ease by which new
content can be generated or adjusted. Furthermore, grammars
and procedural content can be used to aid the designer by
automating some, but not all, design tasks. This approach
was taken by Epic Games for the generation of buildings and

220 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

large urban landscapes. It proved to be highly versatile as it
allowed designers to rapidly regenerate previous sections with
the same constraints but with new rule sets without having to
redo a whole section by hand [30]. Finally, it would be possible
to grow grammars using evolutionary algorithms that select
successful content from a test environment. The grammars
presented in this paper were all drafted using the first method.
Evolutionary grammars, although a tantalizing concept, are
beyond the scope of the material presented here.

A disadvantage of generative grammars, though inherently
controllable, is that the ultimate result of the generation process
may initially be difficult to foresee for game developers. Also,
the construction of generative grammars may be relatively
hard and time intensive. Knowledge of generative grammars
is not common among game designers, yet it is required to
make the most of this approach. Additional playtesting may
be required in early stages of the design process to ensure
an adequate grammar is adopted. Using generative grammars
requires a considerable investment initially. However, once this
investment is made, the expected return is high.

Relevant applications of generative grammars can also be
found in with Lindenmayer Systems (L-Systems) [31]. Lin-
denmayer was a biologist who used grammars to describe the
growth of plants, but L-Systems have been applied to generate
many different spatial outputs [32]. Within the search-based
PCG framework, L-systems form a well-functioning way of
adapting content that is based on grammar rewriting (cf., e.g.,
[33] and [34]). L-Systems are used today in games to generate
trees and other natural structures. L-Systems have been ex-
tended for the procedural generation of city models [35]. This
extension serves to create looped networks of roads, where
original L-Systems only generate tree-structures. The extension
allows a street that is generated close to a previously generated
street to intersect the latter, and thus create a loop back to the
previously generated structure.

C. Graph Grammars

Graph grammars are discussed in relation with level genera-
tion by David Adams in his 2002 thesis Automatic Generation
of Dungeons for Computer Games [36]. Graph grammars are a
specialized form of generative grammars that produce graphs
consisting of edges and nodes, instead of producing strings.
In a graph grammar one or several nodes and interconnecting
edges can be replaced by a new structure of nodes and edges
(see Figs. 2 and 3; [37]). After a group of nodes have been se-
lected for replacement as described by a particular rule, the se-
lected nodes are numbered according to the left-hand side of
the rule (step 2 in Fig. 3). Next, all edges between the selected
nodes are removed (step 3). The numbered nodes are then re-
placed by their equivalents (i.e., nodes with the same number)
on the right-hand side of the rule (step 4). Then any nodes on the
right-hand side that do not have an equivalent on the left-hand
side are added to the graph (step 5). Finally, the edges con-
necting the new nodes are put into the graph as specified by the
right-hand side of the rule (step 6) and the numbers are removed
(step 7). We note that graph grammars can have operations that

—>

1:A

Fig. 2. Example of a graph grammar rule. The numbers are used to identify
corresponding nodes on the left and right hand side. The squares indicate non-
terminal nodes, whereas the circles indicated terminal nodes; [37].

Fig. 4. Sample linear mission with a start, goal and eight tasks to be completed.

allow existing nodes to be removed. However, for the applica-
tion of graph grammars in level generation this may not be a
desirable functionality.

For our purpose, graph grammars are well suited to generate
missions as missions are best expressed as nonlinear graphs.

V. GENERATING MISSIONS

In its most simple form a mission consists of start, a goal, and
a number of tasks in between. This structure can be easily rep-
resented by a directed graph containing a single line or a simple
string (see Fig. 4). Obviously, such a mission is very easy to
generate but it would not be very interesting. We could vary the
tasks, some tasks might involve fighting enemies, while other
would involve solving puzzles. With good pacing, this leads to
interesting games with procedural levels, such as in the currently
popular running games (e.g., Canabalt [38]). Indeed, linear mis-
sions are not a feature of action adventure games. Therefore, for
a game where exploration is important, we need to reorder these
task in a nonlinear fashion.

Graph grammar rules can be used to transform our linear mis-
sion into a different structure. Consider for example the trans-
formative rule represented in Fig. 5. Simply applying this rule
a number of times could transform the linear mission in Fig. 4
into the mission of Fig. 6. Although this structure still will not
make a very good level, an interesting property of applying this
rule is illustrated: the number of tasks is not affected, the rule
only reorganizes their connections. This illustrates that, when
the rules are drafted right, these transformations are quite con-
trollable; no matter how often a rule is applied the number of

DORMANS AND BAKKES: GENERATING MISSIONS AND SPACES FOR ADAPTABLE PLAY EXPERIENCES 221

2.7

/
) LT \

3T

Fig. 5. Reorganize tasks rule. As in Fig. 2, the numbers are used to identify
corresponding nodes on the left and right hand side.

T
T
sl Tk Tkl e
\T/
\T

T

Fig. 6. Sample mission reorganized.

>

2T) A 1T

Fig. 7. Rule to add a key and lock. The colors of the nodes are only used to
help identify the node types, the gray lines indicate which key opens what lock.

HHTEE -0l =fusugo
:

Fig. 8. Mission with keys and locks.

tasks will stay the same. However, the rule also leads to a struc-
ture where all tasks no longer need to be completed. There is
a short path leading directly to the goal, if the player takes this
direct route, only four tasks will be encountered.

A Dbetter way to introduce multiple branches through the mis-
sion is to introduce locks and keys. Locks and keys, in many
different guises are very common in adventure games. Zelda
games are filled with lock and key problems, however not all
locks and keys are immediately recognizable as such. As men-
tioned above, the boomerang found in the Forest Temple level
acts as a key to multiple locks the player needs to unlock in order
to proceed. To add locks and keys we can simply introduce the
rule depicted in Fig. 7. which could transform our simple mis-
sion into a construction as found in Fig. 8. The gray connections
in Figs. 7 and 8 indicate that the keys are required to unlock
the doors. The black connections indicated how a player might
move through the mission.

Obviously, locks and keys are best not found at the same
time. A few simple rules that allow us to move locks and keys
throughout the mission solves this problem (see Figs. 9, 10,

y.-

T M 1L
) 3T w

Fig. 9. Rule to move a lock forward. The circular node marked with a question
mark indicates any node. Applying this rule will not change the type of this
node, only its location and connections in the graph.

@—L] -] » @] -E—{]

Fig. 10. Rule to move a key backwards by relocating a task from behind the
door to the position right in front of the key.

Fig. 11. Reorganized mission with keys and locks.

and 11). In fact, by making sure that locks tend to move for-
ward and keys tend to move backwards, the criteria that players
must encounter the door before they encounter the key is cod-
ified in these rules (recall that the criteria reflects conventional
level-design wisdom). The question mark identifying the node
with number 2 in Fig. 9 indicates that this can be any node. Note
that the rule in Fig. 10 can never relocate the last task behind a
door, this way the rule cannot create doors that would lead to
nowhere.

By adding rules that allow doors to move forward past
other doors, duplicating keys, or create parallel tasks many
different missions can be generated. If the transformation rules
are drafted correctly, these will always generate missions that
can be solved. By adding extra rules to include quest items
that function as keys to new locks and tasks which, when
completed, prepare the player for tasks that follow, the level
design principles that drove the design of the Forest Temple
level can be easily codified. The number of missions that
can be generated with these rules are infinite. Also, we note
that missions can be extended at run-time, while the player is
playing the game. This is implemented by maintaining unused
nonterminals in the mission structure, that may be filled in at a
later time, alongside the concerning space generation.

The greatest advantage of the proposed technique is that it
is highly controllable. The number of tasks, and the number
of locks and keys generated is an immediate result of number
of times certain rules are applied. Depending on how the rules
are constructed, a designer might specify he wants to generate a
dungeon that includes three locks, and duplicate one key. What
is more, it is fairly easy to give human designers direct control
over the selection of rules, so that the construction of the level
might not only be fully automated, it might also be collaboration
between the computer and a human designer (see [39] and [40]

222 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

A Adobe Flash Poyer 10 3 e - e ==)
File View Control Help
() (——)) . ey)

Rancemseed [_____]

Recipe | Manual | __File

Fig. 12. Level generation prototype developed for this research. The designer
selected a task in the middle of the mission structure. The applicable rules are
displayed on the right.

for such a “mixed-initiative” approach). In the prototype we de-
veloped for this research such collaboration is already possible:
a designer is able to select nodes and manually choose to apply
rules that are applicable for that node (see Fig. 12).

VI. GENERATING SPACES

Once a mission structure is generated there are several strate-
gies to build spaces to accommodate the mission. In a previous
paper, we described a method that uses shape grammars to de-
fine spatial parts which are used to build up the space not unlike
ajig-saw puzzle [17]. Although this approach works, it has diffi-
culty generating spaces for missions which allow multiple paths
to converge at the same target. To deal with this problem we
take advantage of the spatial nature of a 2-D representation of a
graph. Our prototype can generate an organic layout for the mis-
sion graph by simulating all nodes in the network as nodes with
connections functioning as springs with some basic algorithms
to reduce the number of overlapping connections (see Fig. 13).
As it stands there is a lot of opportunity to improve this algo-
rithm, but for now this has little priority. Within the context of
action adventure games there are many solutions to deal with
crossing connections should the algorithm not be able to solve
them all. Using teleporters is one such solution that might be ap-
plicable in certain game contexts, stacking multiple 2-D levels
and creating portals or stairs between them might constitute an-
other solution.

Subsequently, simple replacement rules allow us to replace
tasks with rooms of various sizes, place keys inside them and
have locked doors connect them (see Fig. 14). From this a spatial
structure can be generated that follows the same outline and
consists of planes and edges (see Fig. 15).

The next step involves using shape grammar to flesh out this
basic shape and generate more detail. Shape grammars have
been around since the early 1970s after they were first described
by Stiny and Gips [41]. Shape grammars shapes are replaced by
new shapes following rewrite rules similar to those of gener-
ative grammar and graph grammar. Special markers are used
to identify starting points and to help orientate (and sometimes
scale) the new shapes.

1
T
T
7
T i T
S
T T u¢
) G
s 1|7

Fig. 13. Mission in an organic layout.

\&\ ’/ y

&Y

Fig. 15. Mission structure from Fig. 14 translated to a spatial construction.

For example, imagine a shape grammar, whose alphabet con-
sists of three symbols: “a wall,” “open space,” and a “connec-
tion” [see Fig. 16(a)]. In this grammar only the “connection” is a
nonterminal symbol, which has a square marker with a triangle
indicating its orientation. The gray marker on the right-hand side
of a shape grammar rule as represented here, indicates where the
original shape was and what its orientation was. We can design
rules that determine that a connection can be replaced by a wall
(effectively closing the connection), a short piece of corridor, or

DORMANS AND BAKKES: GENERATING MISSIONS AND SPACES FOR ADAPTABLE PLAY EXPERIENCES 223

Fig. 17. Recursive shape rules and output.

a T-fork [see Fig. 16(b)]. The construction depicted in Fig. 16(c)
is a possible output of these rules, provided that the start symbol
was also a connection, and given that at every iteration a random
connection was selected to be replaced.

Shape grammars, like any generative grammar can include
recursion. Recursion is a good way to introduce more variation
in the resulting shapes. An interesting possibility is that hereby
it provides shapes to grow in a certain direction. In this case
the implementation of the grammar should allow the right-hand
side to be resized to match the size of the growing shape. For
instance, the rules in Fig. 17 are recursive and the shapes these
rules produces will have a more natural (fractal) feel.

Rules like those in Fig. 17 are used to add detail to the spatial
construction from Fig. 15, after which the generated space is an-
alyzed to identify natural paths and possible locations to place
barriers, etc. (see Fig. 18). The shape grammar rules used to gen-
erate the space in Fig. 18 result in a natural-looking cave. This
need not be the case. With slightly different rules the procedure
can generate rooms that look much more artificial (see Fig. 19).
In this case the effect would have benefited from aligning the
mission structure to a grid before translating it into a spatial
construction.

The particular implementation of using generative grammars
to outline and generate game levels outlined here generates mis-

Fig. 18. Space grown with shape grammar and analyzed for natural paths con-
necting the rooms (natural appearance).

Fig. 19. Space grown with shape grammar and analyzed for natural paths con-
necting the rooms (artificial appearance).

sions first and spaces afterwards, but this is not the only possible
implementation. It is conceivable to set up a procedure that gen-
erates spaces first (probably best represented by a graph at this
stage), and then generate a mission to match that space. This
would probably lead to a process that involves three steps: gen-
erating a functional description of a space, generating a mission
to match that space, and finally generating a detailed map that
conforms to both the functional description and the mission.
As already pointed out the presented techniques are highly
controllable. The different application of grammars which re-
sults in difference types of dungeons (Figs. 18 and 19) illustrate
this again. In addition, the process outlined up until now can be
executed very fast, and the results invariably lead to fairly inter-
esting levels. There is no need to generate multiple levels and
select the most suitable level in order to get results of reason-
able quality. This high speed and high controllability makes the
technique particularly suited for level generation and adaptation
during play based on player profiles; it can be used to generate
and morph levels based on the player’s preferences as expressed

224 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

by his behavior during play. To this end, techniques for player
modeling need to be incorporated.

VII. ESTABLISHING PLAYER MODELS

Player modeling is an important research area in game
playing. It concerns establishing models of the player (dis-
cussed in this section), and exploiting the models in actual
play (discussed in the section that follows). In general, a player
model is an abstracted description of a player or of a player’s
behavior in a game. In the case the models concern not the
human player, but instead an opponent player, we speak of “op-
ponent modeling.” The goal of opponent modeling is to raise
the playing strength of the (computer-controlled) player by
allowing it to adapt to its opponent and exploit his weaknesses
[42]-[45]. On the other hand, the goal of player modeling
generally is to steer the game towards a predictably high player
satisfaction [46], on the basis of modeled behaviour of the
human player.

Player modeling is of increasing importance in modern video
games [47]. Houlette [48] discussed the challenges of player
modeling in video-game environments, and suggested some
possible implementations of player modeling. A challenge
for player modeling in video games is that models of the
player have to be established: 1) in game environments that
generally are relatively realistic and relatively complex; 2)
with typically little time for observation; and 3) often with only
partial observability of the environment. Once player models
are established, classification of the player has to be performed
in real time. Other computations, such as rendering the game
graphics, have to be performed simultaneously. Researchers
estimate that generally only 20% of all computing resources
are available to the game Al [49]. Of these 20%, a large portion
will be spent on rudimentary Al behavior, such as manoeuvring
game characters within the game environment. This implies
that only computationally inexpensive approaches to player
modeling are suitable for incorporation in the game Al

For the domain of modern video games, we deem three
approaches applicable to player modeling, namely: 1) action
modeling; 2) preference modeling; and 3) player profiling. In
the later described proposal for exploiting the generated player
models, we utilize the preference modeling approach.

A. Action Modeling

In video games, a common approach to establishing models
of the player is by modeling the actions of the player [50], for
instance, by using n-grams [51]. It has been shown that it is pos-
sible to create a model of the actions that players tend to take
in particular game situations [48]. Although such models are
generally quite useful, the actual action that a player takes in a
particular game situation will depend not only on the situation
but also on the player’s overall game preferences (e.g., adopting
a particular strategy). For instance, in one play of the game
a player may want to win by purely military means whereas
in another they may decide to aim for cultural dominance. In
general, a player’s preference is not easily determined on the
basis of only the current game situation, and hence purely ac-
tion-based models tend to be of limited applicability [50]. What
is more, the interest of game developers generally goes out to

determining a player’s actual game experience, which, by im-
plication, is even less easily determined solely on the basis of
action-based models.

B. Preference Modeling

An alternative, more advanced approach is to model the
preferences of players, instead of the actions resulting from
those preferences. This preference-based approach is viable
[50], [52] and identifies the model of a player by analyzing
the player’s choices in predefined game situation. In the pref-
erence-based approach, player modeling can be seen as a
classification problem, where a player is classified as one of
a number of available models based on data that is collected
during the game. Behavior of related game Al is established
based on the classification of the player. Modeling of pref-
erences may be viewed as similar to approaches that regard
known player models: 1) as stereotypes; and 2) as an abstraction
of observations [53]. As a means to generalize over observed
game actions, a preference-based approach may be of interest
to game developers.

C. Player Profiling

A recent development with regard to player modeling, is to
establish automatically psychologically verified player profiles.
Player profiling has gathered substantial research interest [1],
[54], [55]. Van Lankveld [54] states that the major differences
between player modeling (by means of action modeling, or
preference modeling) and player profiling, lie in the features
that are modeled. That is, player modeling generally attempts
to model the player’s playing style (e.g., playing defensively),
while player profiling attempts to model traits of the player’s
personality (e.g., extraversion). The models produced by
player profiling are readily applicable in any situation where
conventional personality models can be used. In addition,
player profiling is supported by a large body of psychological
knowledge.

VII. EXPLOITING PLAYER MODELS

In the context of generative grammers, we distinguish three
approaches for exploiting player models, namely for: 1) space
adaptation; 2) mission adaptation; and 3) difficulty scaling.

Our ongoing work concerns the implementation of these ap-
proaches in the generative framework. How we propose to im-
plement the approaches is discussed in Section IX. The adapta-
tion process is tied in with the generative grammars in order to
transform the gameplay in a controlled manner.

A. Space Adaptation

A natural starting point for exploiting player models, is to
allow the space in which the game is played to grow in response
to the actual behavior of the player. First, after observing the
player for a select period of time, features within the established
player model may indicate that it is recommendable to trans-
form (gradually) the game surroundings. For instance, trans-
form from open to confined spaces, from linear to more organic
environments, and from easily maneuverable corridors to intri-
cate mazes. Secondly, variations in gameplay may be provided
by, in addition, allowing events that take place within certain

DORMANS AND BAKKES: GENERATING MISSIONS AND SPACES FOR ADAPTABLE PLAY EXPERIENCES 225

game spaces (e.g., particular rooms) to respond to the player’s
previous behavior. For instance, if the player already has en-
countered and fought numerous opponent characters, the rules
that generate more opponents decrease in weight while rules
that generate obstacles of a different type increase in weight.
Inversely, when the player model indicates that the player has
a preference for combating opponents (e.g., because he chases
every opponent he encounters), the adaptive game may confront
him with more and tougher opponents.

B. Mission Adaptation

A promising alternative to space adaptation, is to allow the
game’s mission to grow in response to observed behavior of the
player. A strategy in this regard, is to generate a mission that
still has some nonterminals in its structure before constructing
the space. The subsequent replacement of these nonterminals
occurs during play, and is directly or indirectly informed by
the performance of the player. For instance, obtaining a certain
in-game achievement by the player may trigger a dynamically
generated parallel mission to be inserted at a nonterminal node.

In turn, the space in which the mission takes place may grow
in response to the changes in the mission, or may already have
accommodated all resulting possibilities. This could quite liter-
ally lead to an implementation of an interactive structure that
Marie-Laure Ryan calls a fractal story; where a story keeps of-
fering more and more detail as the player turns his attention to
certain parts of the story [56].

C. Difficulty Scaling

Player models, aside from forming an input for space and
mission adaptation, can in addition be applied for adapting au-
tomatically the challenge that a game poses to the skills of a
human player. This is called difficulty scaling [57], or alter-
natively, challenge balancing [58]. When applied to game dy-
namics, difficulty scaling aims usually at achieving a “balanced
game,” i.e., a game wherein the human player is neither chal-
lenged too little, nor challenged too much.

In most games, the only implemented means of difficulty
scaling is typically provided by a difficulty setting, i.e., a discrete
parameter that determines how difficult the game will be. The
purpose of a difficulty setting is to allow both novice and experi-
enced players to enjoy the appropriate challenge that the game
offers. Usually the parameter affects plain in-game properties
of the game opponents, such as their physical strength. Only in
exceptional cases the parameter influences the strategy of the
opponents. Consequently, even on a “hard” difficulty setting,
opponents may exhibit inferior behavior, despite their, for in-
stance, high physical strength. Because the challenge provided
by a game is typically multifaceted, it is tough for the player
to estimate reliably the particular difficulty level that is appro-
priate for himself. Furthermore, generally only a limited set of
discrete difficulty settings is available (e.g., easy, normal, and
hard). This entails that the available difficulty settings are not
fine-tuned to be appropriate for each player.

In recent years, researchers have developed advanced tech-
niques for difficulty scaling of games. Demasi and Cruz [59]
used coevolutionary algorithms to train game characters that
best fit the challenge level of a human player. Hunicke and

Chapman [60] explored difficulty scaling by controlling the
game environment (i.e., controlling the number of weapons
and power-ups available to a player). Spronck et al. [57]
investigated three methods to adapt the difficulty of a game
by adjusting automatically weights assigned to possible game
strategies. In related work, Yannakakis and Hallam [61] pro-
vided a qualitative and quantitative method for measuring
player entertainment in real time.

The proposed mission and space grammars combined with
player models offer a straightforward means to difficulty
scaling. That is, generally game developers may prefer to
use the grammars for the purpose of generating the most
challenging game environment possible. Analogously, the
grammars can be applied for the purpose of obtaining (and
maintaining) a predefined target in the provided challenge,
via outclassing knowledge on the effect of executing grammar
rules on the level’s difficulty (cf. [62] and [63]). Finally, one
may also scale difficulty spatially: e.g., providing a shorter,
more difficult path, and longer, easier paths. This can allow
e.g., speed running, risk versus reward tradeoffs in speed versus
health etc. Grammars can exploit information of the established
player models, to generate dynamically an easily maneuver-
able environment with appropriately few powerful opponents,
instead of a complex environment with overwhelmingly many
powerful opponents. The proposed implementation of the
previously described is discussed next.

IX. ADAPTABLE PLAY EXPERIENCES WITH GRAMMARS

Here we discuss the proposed grammar-based implemen-
tation of adaptable play experiences. We cover the topics of:
1) grammars for space adaptation; 2) grammars for mission
adaptation; and 3) grammars for difficulty scaling. We note that
the adaptation process is tied in with the generative grammars
in order to transform the gameplay in a controlled manner.

A. Grammars for Space Adaptation

Adapting the game’s space in response to behavior of the
player is a relatively straightforward procedure. It consists
of two steps, namely: 1) classifying the player behavior (i.e.,
determining which player model best explains the observed
behavior); and 2) dependent on the classification, applying
an adaptation grammar to gradually transpose the rules of the
shape grammar into distinct, other rules. In this subsection
we focus on the second step, considering the paper’s focus on
generative grammars, and refer the reader to Section VII for
literature on the topic of modeling the player behavior.

Concretely, our adaptation grammars define how a certain
rule given in the space grammar should be transposed into an-
other rule. For example, for the rules illustrated in Fig. 16(b), the
adaptation grammar will define how the rule to generate rect-
angular shaped rooms should gradually transform into a rule to
generate organically shaped rooms. This process is illustrated in
Fig. 20. Indeed, a rule is gradually (instead of instantaneously)
transformed with the intention to maintain player immersion,
which may predictably be lost in case of abrupt changes in the
generation process.

An extension left for future work, is transposing already gen-
erated spaces dynamically into spaces of different appearance

226 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

5>
_— -~ N\

Aopd Juid Jo.

~— —F
I N - |
>m | > >k

D>

Fig. 20. Set of shape grammar rules used in the space adaptation process. The
adaptation rules result in a gradual transformation of the rules to generate spaces.
Execution of a set of adaptation rules depends strictly on the classification of the
player’s behavior.

and property (cf. the video game Okami [64].) For instance, an
already generated space of abstract, rectangular appearance may
transpose into an open, organically appearing space while the
player is observing the process.

B. Grammars for Mission Adaptation

Adapting the game’s mission in response to behavior of the
player is relatively challenging, as the game’s mission needs to
be tightly controlled by the game designer. Our proposed imple-
mentation of mission adaptation is analogous to that of space
adaptation (see Subsection IX.A), in that first the player’s be-
havior is classified, and dependent on the classification an adap-
tation grammar is applied.

Concretely, our adaptation grammars for mission adaptation
define how nonterminal nodes in the predefined mission struc-
ture should be filled adaptively, i.e., dependent on behavior of
the player. In the proposed implementation, the game designer
envisions the general mission of a game level, and subsequently
defines the mission rules to replace the nonterminals. Each
adaptation rule matches a certain classification of the player
behavior, and hence, dependent on the player classification, the
resulting mission structure is adapted. This process is illustrated
in Fig. 21. In the figure, the adaptation rule for either “player
type n,” “m,” or “0” is applied to the adaptive nonterminal node
“?,” resulting in a player-dependent mission structure.

Indeed, one needs to realize that a multitude of player types
may exist in reality, but that for reasons of feasibility, game de-
velopers may need to generalize the player’s behavior in a lim-
ited set of player types. For instance, player type n exihibts ag-
gressive behavior, player type m exhibits defensive behavior,
and player type o uses foremost long-range weapons.

C. Grammars for Difficulty Scaling

Following the methods for space and mission adaptation
described above, game designers can directly infuse expert
knowledge on the game’s difficulty into the concerning gram-
mars. That is, terminating rules for adaptation of space and

Dallale iy » a il

Player type n: [D>
N
prpertyoen: [>

Fig. 21. Set of mission grammar rules used in the mission adaptation process.
In the figure, the adaptation rule for either “player type n,” “m,” or “o0” is applied
to the adaptive nonterminal node “?,” resulting in a player-dependent mission
structure.

Player type o: n) .

mission generation can be labelled as resulting in, for instance,
an “easy,” “normal,” or “hard” level, where a numeric label
of “0” indicates “very easy,” and a numeric label of “100”
indicates “very hard.” The labelling in turn is used to proba-
bilistically match adaptations to the classified player type, e.g.,
adaptations that result in a relatively “easy” level will never be
applied for expert players, rarely for novice players, and often
for beginners.

Indeed, this leaves intact a certain discretisation in difficulty
levels, one that may not be applicable to every player, or one
that game designers may want to infer dynamically depending
on the performance of the player. To accommodate dynamically
scaling the difficulty level while the game is being played, we
define a grammar consisting of two sets of difficulty scaling
rules. As an acknowledgement that difficulty is a multifaceted
construct, we note that the grammar concerns a set of rules, in-
stead of one rule to increase the difficulty. In our implementa-
tion of grammars for difficulty scaling, we implement one rule
set for increasing the difficulty, and one rule set for decreasing
the difficulty. Each rule in the set refers directly to one aspect
of difficulty, and may be selectively applied to match the facets
of the player’s performance. For controllability, the decision of
which adaptation rule to apply for which player type lies firmly
in the hand of the game developer.

One may correctly note that difficulty arises from the com-
bination and ordering of pieces in a level, rather than the ex-
istence of individual pieces themselves. In the current frame-
work, a mechanism to precisely control the ordering of pieces
according to difficulty is not included. However, as rules are se-
lected on the basis of relative probability, and the selection is
linked to the player level, game designers are able to loosely
control the execution of “easy” rules for beginners, and “hard”
rules for expert players. The combined interplay of difficulties
working their way up the grammar, can herewith be controlled
to some extent.

X. PROTOTYPE

We would like to highlight that the prototype in which we
incorporate the ideas proposed in this paper, is available online,
at http://www jorisdormans.nl/missionspacegenerator.

DORMANS AND BAKKES: GENERATING MISSIONS AND SPACES FOR ADAPTABLE PLAY EXPERIENCES 227

TABLE I
GENERATIVE TECHNIQUES INCORPORATED IN THE PROTOTYPE

Generative technique Incorporated
Generative grammars for mission adapation Yes
Generative grammars for space adaptation Yes
Establishing player models No
Exploiting player models No
Adaptable play experiences (Framework) Yes
Adaptable play experiences (Playing modelling) No

Table I lists which generative techniques have already been
incorporated in the prototype. All described ideas regarding
generative grammars and its application to: 1) generating mis-
sions; and 2) generating spaces, have been implemented in the
prototype. A particular feature of the prototype is that it allows
level designers to define and organize a level’s mission via a
highly controllable organic layout (see Fig. 13), on the basis
of which a translated spacial construction is generated (see
Figs. 15, 18, and 19). The ideas regarding establishing and ex-
ploiting player models are currently being implemented in the
prototype, following the proposal discussed in Sections VII-IX.
The framework for player-adaptive space and mission gen-
eration is already incorporated in the prototype. The use of
player models in the player-adaptive framework is not yet
incorporated.

XI. CONCLUSION

The levels of action adventure games, and numerous other
games, are double structures consisting of both spaces and mis-
sions. When generating levels for this genre procedurally, it is
best to break down the generation process in two steps; one for
generating the game’s space, and one for generating the game’s
mission. Generative graph grammars are suited to generate mis-
sions. They are capable of generating nonlinear structures which
for games of exploration are preferred over linear structures. At
the same time they can also capture the larger structures required
for a well-formed game experience. Once a mission is generated
its 2-D graph representation can be used to construct a basic
shape which can be then fleshed out using a shape grammar.
What is more, the process can be easily controlled, the selection
of different rule-sets can alter the appearance of a level drasti-
cally while there are many opportunities for a human designer
to hand-pick rules during the process.

Breaking down the process into these two steps allows us
to capitalize on the strengths of each type of grammar. With
a well-designed set of rules and the clever use of recursion,
this method can be employed to generate interesting and varied
levels that are fun to explore and offer a coherent experience.
Furthermore, these techniques can be used to generate levels on
the fly, allowing the game to respond to the player behavior. By
means of establishing and exploiting player models, generative
grammars can be used to scale dynamically the difficulty level
to the player, and adapt the game space and game mission on-
line, while the game is still being played, to ensure the game

experience is tailored to the individual player. This opens up
new opportunities for games and interactive storytelling.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
their constructive comments that helped to improve the article
considerably.

REFERENCES

[1] C. Pedersen, J. Togelius, and G. Yannakakis, “Modeling player experi-
ence for content creation,” IEEE Trans. Comput. Intell. AI Game., vol.
1, no. 2, pp. 121-133, Jun. 2009.

[2] M. Toy, G. Wichman, K. Arnold, and J. Lane, Rogue, 1980.

[3] G. Gygax and D. Arneson, Dungeons & Dragons. TSR, Wizards of
Coast, 1974.

[4] E.Schaefer, D. Brevik, M. Schaefer, E. Sexton, and K. William, Diablo.
Blizzard North, 1996.

[5] T. Baldree, Torchlight. Runic Games, 2009.

[6] W. Wright, Spore. Maxis, 2008.

[7] M. Persson and J. Bergensten, Minecraft. Mojang, 2009.

[8] J. Togelius, M. Preuss, and G. N. Yannakakis, “Towards multiobjective
procedural map generation,” in Proc. Int. Conf. Found. Digital Games,
Monterey, CA, 2010.

[9] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular automata for
real-time generation of infinite cave levels,” in Proc. Int. Conf. Found.
Digital Games, Monterey, CA, 2010.

[10] M. Anderson, Dungeon-Building Algorithm. On Roguebasin. [On-
line]. Available: http://roguebasin.roguelikedevelopment.org/index.
php?title=Dungeon-Building_Algorithm

[11] Grid Based Dungeon Generator. On Roguebasin. [Online].
Available: http://roguebasin.roguelikedevelopment.org/index.
php?title=Grid_Based Dungeon_Generator

[12] J. Babcock, Cellular Automata Method for Generating Random
Cave-Like Levels. On Roguebasin. [Online]. Available: http://rogue-
basin.roguelikedevelopment.org/index.php?title=Cellular_Au-
tomata_Method_for Generating_ Random_Cave-Like Levels

[13] E. Adams and A. Rollings, Fundamentals of Game Design, ser. Game
Design and Development. Upper Saddle River, NJ: Prentice-Hall,
Sep. 2006.

[14] G. Smith, M. Treanor, J. Whitehead, and M. Mareas, “Rhythm-based
level generation for 2d platformers,” in Proc. Int. Conf. Found. Digital
Games, Orlando, FL, 2009, pp. 175-182.

[15] C. Ashmore and M. Nitsche, “The quest in a generated world,” in Proc.
Digital Games Res. Assoc. Conf., Situated Play, 2007, pp. 503-509.

[16] K. Hullett and J. Whitehead, “Design patterns in FPS levels,” in Proc.
Int. Conf. Found. Digital Games, Monterey, CA, 2010, pp. 78-85.

[17] J. Dormans, “Adventures in level design: Generating missions and
spaces for action adventure games,” in Proc. Found. Digital Games
Conf., 2010.

[18] B. Cousins, “Elementary game design,” in Develop Magazine.
ford, U.K.: Intent Media, 2004, vol. 10.

[19] Y. Koizumi and K. Usui, Super Mario Sunshine. Nintendo, 2002.

[20] W. Spector and H. Smith, Deus Ex. Nintendo, 2000.

[21] E. Aonuma, The Legend of Zelda: Twilight Princess. Nintendo, 2006.

[22] S. Miyamoto and T. Tezuka, Zelda Series. Nintendo, 1986.

[23] C.Kohler, Power-Up: How Japanese Video Games Gave the World an
Extra Life. Bradygames, 2005.

[24] D. Cook, The Chemistry of Game Design. Gamasutra, 2007 [Online].
Available: http://www.gamasutra.com/view/feature/1524/the _chem-
istry_of game design.php

[25] N. Chomsky, Language and Mind (Extended Edition). 1972.

[26] C. Manning and H. Schiitze, Foundations of Statistical Natural Lan-
guage Processing. Cambridge, MA: MIT Press, 2000.

[27] A. Van den Bosch, “Scalable classification-based word prediction and
confusible correction,” Traitement Automatique des Langues, vol. 46,
no. 2, pp. 39-63, 2006.

[28] G. Kempen, Natural Language Generation.
lands: Martinus Nijhoff Publishers, 1987.

[29] R.de Beaugrande, “The story of grammars and the grammar of stories,”
J. Pragmatics, vol. 6, pp. 383-422, 1982.

[30] J. Golding, “Building blocks: Artist driven procedural buildings,” pre-
sented at the GDC, San Francisco, CA, 2010.

Hert-

Dordrecht, The Nether-

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

[31] A.Lindenmayer, “Mathematical models for cellular interactions in de-
velopment II. Simple and branching filaments with two-sided inputs,”
J. Theor. Biol., vol. 18, no. 3, pp. 300-315, 1968.

[32] M. Mozgovoy, Algorithms, Languages, Automata, and Compilers: A
Practical Approach. Sudbury, MA: Jones & Bartlett, 2009.

[33] G. Ochoa, “On genetic algorithms and Lindenmayer systems,” in
Parallel Problem Solving From NaturePPSN V. Berlin, Germany:
Springer-Verlag, 1998, pp. 335-344.

[34] D. Ashlock, K. Bryden, and S. Gent, “Creating spatially constrained
virtual plants using L-systems,” Smart Eng. Syst. Design: Neural
Netw., Evol. Program. Artif. Life, pp. 185-192, 2005.

[35] Y. Parish and P. Miiller, “Procedural modeling of cities,” in Proc. 28th
Annu. Conf. Comput. Graphics Interact. Tech., Los Angeles, CA, 2001,
pp. 301-308.

[36] D. Adams, “Automatic generation of dungeons for computer games,”
Ph.D. dissertation, Univ. Sheffield, Sheffield, U.K., 2002.

[37] J. Rekers and A. Schurr, “A graph grammar approach to graphical
parsing,” 1995, p. 195, vl.

[38] A. Saltsman, Canabalt. 2009 [Online]. Available: http://adamatomic.
com/canabalt/

[39] M. M. G. Smith and J. Whitehead, “Tanagra: A mixed-initiative level
design tool,” in Proc. Found. Digital Games Conf., Monterey, CA,
2010, pp. 209-216.

[40] R. Smelik, T. Turenel, K. J. de Kraker, and R. Bidarra, “Inegrating
procedural generation and manual editing of virtual worlds,” in Proc.
Found. Digital Games Conf., Monterey, CA, 2010.

[41] G. Stiny and J. Gips, “Shape grammars and the generative specification
of painting and sculpture,” Inf. Process., vol. 71, pp. 1460-1465, 1972.

[42] D.Carmel and S. Markovitch, “Learning models of opponent’s strategy
in game playing,” in Proc. AAAI Fall Symp. Games: Plan., and Learn.,
Raleigh, NC, 1993, pp. 140-147.

[43] H. Iida, J. W. H. M. Uiterwijk, H. J. Van den Herik, and 1. S. Her-
schberg, “Potential applications of opponent-model search. Part 1: The
domain of applicability,” Int. Comput. Chess Assoc. J., vol. 16, no. 4,
pp. 201208, 1993.

[44] H. H. L. M. Donkers, J. W. H. M. Uiterwijk, and H. J. Van den Herik,
“Probabilistic opponent-model search,” Inf. Sci., vol. 135, no. 3—4, pp.
123-149, 2001.

[45] H. H. L. M. Donkers, “Nosce Hostem—Searching with opponent
models,” Ph.D. dissertation, Faculty Humanities Sci., Maastricht
Univ., Maastricht, The Netherlands, 2003.

[46] H. J. Van den Herik, H. H. L. M. Donkers, and P. H. M. Spronck,
“Opponent modelling and commercial games,” in Proc. IEEE Symp.
Comput. Intell. Games, G. Kendall and S. Lucas, Eds., New York,
2005, pp. 15-25.

[47] J. Firnkranz, “Recent advances in machine learning and game
playing,” OGAI J., vol. 26, no. 2, pp. 19-28, 2007.

[48] R. Houlette, “Player modeling for adaptive games,” in A/ Game Pro-
gramming Wisdom 2. Hingham, MA: Charles River Media, 2004, pp.
557-566.

[49] 1. Millington, Artificial Intelligence for Games. San Francisco, CA:
Morgan Kaufmann, 2006.

[50] H. H. L. M. Donkers and P. H. M. Spronck, “Preference-based
player modeling,” in A] Game Programming Wisdom 3, S. Rabin,
Ed. Hingham, MA: Charles River Media, 2006, pp. 647—659.

[51] F.D. Laramée, “Using n-gram statistical models to predict player be-
havior,” in Al Game Programming Wisdom, S. Rabin, Ed. Hingham,
MA: Charles River Media, 2002, pp. 596-601.

[52] G. Yannakakis, M. Maragoudakis, and J. Hallam, “Preference learning
for cognitive modeling: A case study on entertainment preferences,”
IEEE Trans. Syst. Man Cybern. A, Syst. Humans, vol. 39, no. 6, pp.
1165-1175, Jun. 2009.

[53] J. Denzinger and J. Hamdan, “Improving modeling of other agents
using tentative stereotypes and compactification of observations,” in
Proc. IEEE/WIC/ACM Int. Conf. Intell. Agent Technol., J. Liu and N.
Cercone, Eds., New York, 2004, pp. 106-112.

[54] G. Lankveld, S. Schreurs, and P. Spronck, “Psychologically verified
player modelling,” in Proc. 10th Int. Conf. Intell. Games Simulation,
L. Breitlauch, Ed., Ghent, Belgium, 2009, pp. 12—19.

[55] G. Yannakakis and J. Hallam, “Real-time game adaptation for opti-
mizing player satisfaction,” IEEE Trans. Comput. Intell. AI Games, vol.
1, no. 2, pp. 121-133, Jun. 2009.

[56] M. Ryan, Narrative as Virtual Reality: Immersion and Interactivity
in Literature and Electronic Media. Baltimore, MD: Johns Hopkins
Univ. Press, 2001.

[57] P.H. M. Spronck, I. G. Sprinkhuizen-Kuyper, and E. O. Postma, “Dif-
ficulty scaling of game Al,” in Proc. 5th Int. Conf. Intell. Games Simu-
lation, A. E. Rhalibi and D. Van Welden, Eds., Ghent, Belgium, 2004,
pp. 33-37.

[58] J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time challenge
balance in an RTS game using rtNEAT,” in Proc. IEEE Symp. Comput.
Intell. Games, P. Hingston and L. Barone, Eds., New York, 2008, pp.
87-94.

[59] P. Demasi and A. J. de. O. Cruz, “Online coevolution for action
games,” Int. J. Intell. Games Simulation, vol. 2, no. 3, pp. 80-88,
2002.

[60] R. Hunicke and V. Chapman, “Al for dynamic difficulty adjustment
in games,” in Proc. AAAI Workshop Challenges Game Artif. Intell.,
Menlo Park, CA, 2004, pp. 91-96.

[61] G. N. Yannakakis and J. Hallam, “Towards optimizing entertainment
in computer games,” Appl. Artif. Intell., vol. 21, no. 10, pp. 933-971,
2007.

[62] S.C.J.Bakkes, P. H. M. Spronck, and H. J. Van den Herik, “Rapid and
reliable adaptation of video game Al,” IEEE Trans. Comput. Intell. Al
Games, vol. 1, no. 2, pp. 93—104, 2009.

[63] S.C.J.Bakkes, P. H. M. Spronck, and H. J. Van den Herik, “Opponent
modelling for case-based adaptive game Al,” Entertain. Comput., vol.
1, no. 1, pp. 27-37, 2009.

[64] H. Kamiya, Okami. Clover Studio, 2006.

Joris Dormans is currently working towards the
Ph.D. in game design.

He is currently a Lecturer of Game Development at
the Computer Science Department, Amsterdam Uni-
versity of Applied Sciences (HvA), Amsterdam, The
Netherlands. He also works as a freelance and inde-
pendent Game Designer. His designs and research fo-
cuses on emergent gameplay, automatic level design,
and formal description of game rules. As a designer,
he worked on two published board games and several
(serious) online games.

Sander Bakkes received the Ph.D. degree in artificial
intelligence in video games.

He is currently a Postdoctoral Researcher and
Teacher at the Amsterdam University of Applied
Sciences (HvA), Amsterdam, The Netherlands. In
previous work, he investigated the rapid adapta-
tion of character behavior in complex video-game
environments. At present, his research is focussed
on incorporating player-modeling techniques in
procedurally generated environments, for the
purpose of personalizing game experiences, and

increasing player satisfaction.

