
RAPID ADAPTATION OF VIDEO GAME AI

Sander Bakkes, Pieter Spronck and Jaap van den Herik
Tilburg University

Tilburg Centre for Creative Computing (TiCC)
P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands

e-mail: {s.bakkes, p.spronck, h.j.vdnherik}@uvt.nl

ABSTRACT

Current approaches to adaptive game AI require either
a high quality of utilised domain knowledge, or a large
number of adaptation trials. These requirements ham-
per the goal of rapidly adapting game AI to changing
circumstances. In an alternative, novel approach, do-
main knowledge is gathered automatically by the game
AI, and is immediately (i.e., without trials and with-
out resource-intensive learning) utilised to evoke effec-
tive behaviour. In this paper we discuss this approach,
called ‘rapidly adaptive game AI’. We perform experi-
ments that apply the approach in an actual video game.
From our results we may conclude that rapidly adaptive
game AI provides a strong basis for effectively adapting
game AI in actual video games.

INTRODUCTION

Over the last decades, modern video games have become
increasingly realistic with regard to visual and auditory
presentation. However, game AI has not reached a high
degree of realism yet. Game AI is typically based on
non-adaptive techniques [22]. A major disadvantage of
non-adaptive game AI is that once a weakness is discov-
ered, nothing stops the human player from exploiting
the discovery. The disadvantage can be resolved by en-
dowing game AI with adaptive behaviour, i.e., the abil-
ity to learn from mistakes. Adaptive game AI can be
established by using machine-learning techniques, such
as artificial neural networks or evolutionary algorithms.
In practice, adaptive game AI in video games is sel-
dom implemented because machine-learning techniques
typically require numerous trials to learn effective be-
haviour. To allow rapid adaptation in games, we de-
scribe a means of rapid adaptation that is inspired by
the human capability to solve problems by generalising
over previous observations in a restricted problem do-
main.
The outline of this paper is as follows. First, we dis-
cuss the aspect of entertainment in relation to game AI.
Then, we discuss our approach to establish rapidly adap-
tive game AI. Subsequently, we describe an implemen-
tation of rapidly adaptive game AI. Next, we describe
the experiments that test rapidly adaptive game AI in

an actual video game, followed by a discussion of the ex-
perimental results. Finally, we provide conclusions and
describe future work.

ENTERTAINMENT AND GAME AI

The purpose of a typical video game is to provide enter-
tainment [22, 15]. Of course, the criteria of what makes
a game entertaining may depend on who is playing the
game. Literature suggests the concept of immersion as
a general measure of entertainment [14, 21]. Immer-
sion concerns evoking an immersed feeling with a video
game, thereby retaining a player’s interest in the game.
As such, an entertaining game should at the very least
not repel the feeling of immersion from the player [12].
Aesthetical elements of a video game, such as graphics,
narrative, and rewards, are instrumental in establishing
an immersive game-environment. Once established, the
game environment needs to uphold some form of consis-
tency for the player to remain immersed within it [12].
The task for game AI is to control game characters in
such a way that behaviour exhibited by the characters
is consistent within the game environment. In a real-
istic game environment, realistic character behaviour is
expected. As a result, game AI that is solely focused on
exhibiting the most challenging behaviour is not nec-
essarily regarded as realistic. For instance, in a typical
first-person shooter (FPS) game it is not realistic if char-
acters controlled by game AI aim with an accuracy of
one hundred per cent. Game AI for shooter games, in
practice, is designed to make intentional mistakes, such
as warning the player of an opponent character’s where-
abouts by intentionally missing the first shot [13].
Consistency of computer-controlled characters within a
game environment is often established with tricks and
cheats. For instance, in the game Half-Life, tricks
were used to establish the illusion of collaborative team-
work [12], causing human players to assume intelligence
where none existed [13]. While it is true that tricks
and cheats may be required to uphold consistency of
the game environment, they often are implemented only
to compensate for the lack of sophistication in game
AI [6]. In practice, game AI in most complex games
still is not consistent within the game environment, and
exhibits what has been called ‘artificial stupidity’ [13]

rather than artificial intelligence. To increase game con-
sistency, and thus the entertainment value of a video
game, in our research we foremost strive to create an
optimally playing game AI, as suggested by Buro and
Furtak [6]. In complex video games, such as real-time
strategy (RTS) games, near-optimal game AI is seen
as the only way to obtain consistency of the game en-
vironment [12]. Once near-optimal game AI is estab-
lished, difficulty-scaling techniques can be applied to
downgrade the playing-strength of game AI, to ensure
that a suitable challenge is created for the player [19].

APPROACH

For game AI to be consistent with the game environment
in which it is situated, it needs the ability to adapt ade-
quately to changing circumstances. Game AI with this
ability is called ‘adaptive game AI’. Typically, adaptive
game AI is implemented for performing adaptation of
the game AI in an online and computer-controlled fash-
ion. Improved behaviour is established by continuously
making (small) adaptations to the game AI. To adapt
to circumstances in the current game, the adaptation
process typically is based only on observations of cur-
rent gameplay. This approach to adaptive game AI may
be used to improve significantly the quality of game AI
by endowing it with the capability of adapting its be-
haviour while the game is in progress. For instance,
the approach has been successfully applied to simple
video games [7, 11], and to complex video games [19].
However, this appproach to adaptive game AI requires
either (1) a high quality of the utilised domain knowl-
edge, or (2) a large number of adaptation trials. These
two requirements hamper the goal of achieving rapidly
adaptive game AI.
To achieve rapidly adaptive game AI, we propose an
alternative, novel approach to adaptive game AI that
comes without the hampering requirements of typical
adaptive game AI. The approach is coined ’rapidly adap-
tive game AI’. We define rapidly adaptive game AI as
an approach to game AI where domain knowledge is
gathered automatically by the game AI, and is immedi-
ately (i.e., without trials and without resource-intensive
learning) utilised to evoke effective behaviour. The ap-
proach, illustrated in Figure 1, implements a direct feed-
back loop for control of characters operating in the game
environment. The behaviour of a game character is de-
termined by the game AI. Each game character feeds
the game AI with data on its current situation, and
with the observed results of its actions. The game AI
adapts by processing the observed results, and generates
actions in response to the character’s current situation.
An adaptation mechanism is incorporated to determine
how to best adapt the game AI. For instance, reinforce-
ment learning may be applied to assign rewards and
penalties to certain behaviour exhibited by the game
AI.

Game AI Game Character
Game

Environment

Observations

Case Base

Opponent
Model

Adaptation
Mechanism

Evaluation
Function

Figure 1: Rapidly adaptive game AI (see text for de-
tails).

For rapid adaption, the feedback loop is extended by
(1) explicitly processing observations from the game AI,
and (2) allowing the use of game-environment attributes
which are not directly observed by the game character
(e.g., observations of team-mates). Inspired by the case-
based reasoning paradigm, the approach collects char-
acter observations and game environment observations,
and extracts from those a case base. The case base con-
tains all observations relevant for the adaptive game AI,
without redundancies, time-stamped, and structured in
a standard format for rapid access. To rapidly adapt to
circumstances in the current game, the adaptation pro-
cess is based on domain knowledge drawn from observa-
tions of a multitude of games. The domain knowledge
gathered in a case base is typically used to extract mod-
els of game behaviour, but can also directly be utilised
to adapt the AI to game circumstances. In our proposal
of rapidly adaptive game AI, the case base is used to ex-
tract an evaluation function and opponent models. Sub-
sequently, the evaluation function and opponent models
are incorporated in an adaptation mechanism that di-
rectly utilises the gathered cases.

The approach to rapidly adaptive AI is inspired by the
human capability to reason reliably on a preferred course
of action with only a few observations on the problem
domain. Following from the complexity of modern video
games, game observations should, for effective and rapid
use, (1) be represented in such a way that stored cases
can be reused for previously unconsidered situations,
and (2) be compactly stored in terms of the amount of
retrievable cases [1]. As far as we know, rapidly adap-
tive game AI has not yet been implemented in an actual
video game.

Figure 2: Screenshot of the Spring game environment.
In the screenshot, airplane units are flying over the ter-
rain.

IMPLEMENTATION

This section discusses our implementation of rapidly
adaptive game AI. We subsequently discuss (A) the
game environment in which we implement rapidly adap-
tive game AI, (B) the established evaluation function,
and (C) an adaptation mechanism inspired by the case-
based reasoning paradigm. Previously established oppo-
nent models [17] will be incorporated in future research.

Game Environment

The game environment in which we implement rapidly
adaptive game AI, is the actual video game Spring [10].
Spring, illustrated in Figure 2, is a typical and open-
source RTS game, in which a player needs to gather
resources for the construction of units and buildings.
The aim of the game is to use the constructed units and
buildings to defeat an enemy army in a real-time battle.
A Spring game is won by the player who first destroys
the opponent’s ‘Commander’ unit.

Modern RTS games typically progress through several
distinct phases as players perform research and create
new buildings that provide them with new capabilities.
The phase of a game can be straightforwardly derived
from the observed traversal through the game’s tech
tree. Traversing the tech tree is (almost) always ad-
vantageous, yet there is a cost for doing so in time and
game resources. In Spring, three levels of technology
are available. At the start of the game, a player can only
construct Level 1 structures and Level 1 units. Later in
the game, after the player has performed the required
research, advanced structures and units of Level 2 and
Level 3 become available.

Evaluation Function

To exhibit behaviour consistent within the game envi-
ronment presented by modern video games, game AI
needs the ability to assess accurately the current situa-
tion. This requires an appropriate evaluation function.
The high complexity of modern video games makes the
task to generate such an evaluation function for game
AI a difficult one.
In previous research we discussed an approach to gener-
ate automatically an evaluation function for game AI in
RTS games [4]. The approach incorporated TD-learning
[20] to learn unit-type weights for the evaluation func-
tion, to reflect the actual playing strength of each unit
type. Our evaluation function for the game’s state is
denoted by

v(p) = wpv1 + (1− wp)v2 (1)

where wp ∈ [0 . . . 1] is a free parameter to determine
the weight of each term vn of the evaluation function,
and p ∈ N is a parameter that represents the current
phase of the game. Our evaluation function incorporates
two evaluative terms, the term v1 that represents the
material strength and the term v2 that represents the
Commander safety.
Previous research performed in the Spring environment
has shown that the accuracy of situation assessments
are closely related to the phase of the game in which
they are made [5]. To distinguish phases of the Spring
game, we map tech levels to game phases and distinguish
between when tech levels are “new,” and when they are
“mature,” as indicated by the presence of units with
a long construction time. This leads us to define the
following five game phases.

• Phase 1: Level 1 structures observed.

• Phase 2: Level 1 units observed that have a build
time ≥ 2,500.

• Phase 3: Level 2 structures observed.

• Phase 4: Level 2 units observed that have a build
time ≥ 15,000.

• Phase 5: Level 3 units or Level 3 structures ob-
served.

Results of experiments to test the established evaluation
function showed that just before the game’s end, the
established evaluation function is able to predict cor-
rectly the outcome of the game with an accuracy that
approaches one hundred per cent. Note that this is not a
trivial result, for two reasons. First, the evaluation func-
tion is tuned to make predictions that are good during a
large part of the game, not only at the end, and hence it
will trade prediction accuracy at the end of the game for
higher prediction accuracy earlier in the game. Second,

if the goal of the game was to destroy all the opponent’s
units, a correct prediction would be easy to make at
the end. However, the goal is to destroy the opponent’s
Commander, and we found that it sometimes happens
that a player who is behind in material strength can win,
often because the opponent’s Commander makes a high-
risk move, such as attacking strong enemy units on its
own. An evaluation function that is based on compari-
son of material strength and Commander safety cannot
take such moves into account other than allowing for
their general statistical likelihood.
In addition, experimental results showed that the eval-
uation function predicts ultimate wins and losses accu-
rately before half of the game is played. From these re-
sults, we concluded that the established evaluation func-
tion effectively predicts the outcome of a Spring game
and that the proposed approach is suitable for generat-
ing evaluation functions for highly complex video games,
such as RTS games. Therefore, we incorporate the es-
tablished evaluation function in the implementation of
our rapidly adaptive game AI.

Adaptation Mechanism

In our approach, domain knowledge collected in a case
base is utilised for adapting game AI. To generalise over
observations with the problem domain, the adaptation
mechanism incorporates an offline means to index col-
lected games, and performs an offline clustering of ob-
servations. To ensure that game AI is effective from the
onset of a game, it is initialised with a previously ob-
served, successful game strategy. For online action selec-
tion, a similarity matching is performed that considers
six experimentally determined features. The adapta-
tion mechanism is algorithmically described below, and
is subsequently discussed in detail.

// O f f l i n e p r o c e s s i n g
A1 . Game index ing ; c a l c u l a t e indexes f o r a l l

s t o r ed games .
A2 . C lu s t e r i ng o f ob s e rva t i on s ; group toge the r

s i m i l a r ob s e rva t i on s .

// I n i t i a l i s a t i o n o f game AI
B1 . Es tab l i sh the (most l i k e l y) s t r a t e g y o f

the opponent p laye r .
B2 . Determine in which parameter−band va lues

t h i s opponent s t r a t e g y can be abs t rac t ed .
B3 . I n i t i a l i s e game AI with an e f f e c t i v e

s t r a t e g y observed aga in s t the opponent
with the most s i m i l a r parameter−band
va lue s .

// Online ac t i on s e l e c t i o n
C1 . Use game indexes to s e l e c t the N most

s i m i l a r games .
C2 . Of the s e l e c t e d N games , s e l e c t the

M games that best s a t i s f y the goa l
c r i t e r i o n .

C3 . Of the s e l e c t e d M games , s e l e c t the most
s i m i l a r obse rvat i on .

C4 . Perform the ac t i on s to r ed f o r the s e l e c t e d
obse rvat i on .

Game indexing (A1): We define a game’s index as
a vector of fitness values, containing one entry for each
time step. These fitness values represent the desirability
of all observed game states. To calculate the fitness
value of an observed game state, we use the previously
established evaluation function (denoted in Equation 1).
Game indexing is supportive for later action selection,
and as it is a computationally-expensive procedure, it is
performed offline.
Clustering of observations (A2): As an initial
means to cluster similar observations, we apply the stan-
dard k-means clustering algorithm [9]. The metric that
expresses an observation’s position in the cluster space
is comprised of a weighted sum of the six observational
features that also are applied for similarity matching.
Clustering of observations is supportive for later action
selection, and as it is a computationally-expensive pro-
cedure, it is performed offline.
Similarity matching (A2 and C3): To compare a
given observation with another, we define six observa-
tional features, namely (1) phase of the game, (2) mate-
rial strength, (3) commander safety, (4) positions cap-
tured, (5) economical strength, and (6) unit count. Sim-
ilarity is defined by a weighted sum of the absolute dif-
ference in features values. The weighted sum for both
clustering of observations and similarity matching is cal-
culated as follows:

similarity = ((1 + diff(phase of the game))

∗ (0.5 ∗ diff(unit count)))

+ diff(material strength)

+ diff(commander safety)

+ diff(positions captured)

+ diff(economical strength)

As observations are clustered, calculating the similar-
ity between observations is relatively computationally-
inexpensive. This is important, as similarity matching
must be performed online.
Initialisation of game AI (B1-B3): To intelligently
select the strategy initially followed by the game AI,
we first determine which strategy the opponent is likely
to use. In our game environment, perfect information
of the opponent is available when loading the opponent
game AI (i.e., the settings of all opponent parameters,
indicating the strategic preferences, are known). We use
this information to determine the initial strategy of the
game AI. In a typical game-playing setting, however,
such information is not directly available, but has to
be established via statistical learning teachniques such
as opponent modeling. This will be investigated in fu-
ture work. When the opponent strategy has been estab-
lished, we determine in which parameter bands [8] the
opponent strategy can be abstracted. We define three
bands for each parameter, ‘low’, ‘medium’ and ‘high’.
We subsequently initialise the game AI with an effective
strategy observed against the most similar opponent.
We consider a strategy effective when in previous play

it achieved a set goal criterion (thus, the game AI will
never be initialised with a predictably ineffective strat-
egy), and consider opponents strictly similar when the
observed values of the parameter bands are identical.
Action selection (C1-C4): Using the established
game indexes, we select the N games with the smallest
accumulated fitness difference with the current game,
up until the current observation. Subsequently, of the
selected N games, we perform the game action of the
most similar observation of the M games that satisfy
a particular goal criterion. The goal criterium can be
any metric to represent preferred behaviour. For in-
stance, a preferred fitness value of 0 can represent chal-
lenging gameplay, as this implies that players are equally
matched. Naturally, we have to consider that perform-
ing actions associated to similar observations may not
yield the same outcome when applied to the current
state. Therefore, to estimate the effect of performing
the retrieved game action, we straightforwardly com-
pensate for the difference in metric value between the
current and the selected observation.

EXPERIMENTS

This section discusses experiments that test our imple-
mentation of rapidly adaptive game AI. We first describe
the experimental setup and the performance evaluation,
and then the experimental results.

Experimental Setup

To test our implementation we start collecting observa-
tions of games where two game AIs are posed against
each other. Multiple Spring game AIs are available.
We found one open-source game AI, which the author
called ‘AAI’ [18]. We enhanced this game AI with the
ability to collect game observations in a case base, and
the ability to disregard radar visibility so that perfect
information on the environment was available. As op-
posing player, we used the original AAI game AI. We
found 27 parameters that define the strategic behaviour
of the game AI.1

For collecting observation, we simulate different play-
ers competing with different players, by for each game
pseudo-randomising the strategic parameters of both
players. The collection process was as follows. Dur-
ing each game, game observations were collected every
127 game cycles, which corresponds to the update fre-
quency of AAI. With the Spring game operating at 30

1The concerning parameters determine the game strategy
on a high, strategic level, and not so much on a low, tac-
tical level. Three examples of these parameters are air-
craft rate (determines how many airplane units the AI will
build), max mex defence distance (maximum distance to base
where the AI defends metal extractors), and max scouts (max-
imum of units scouting at the same time). The authors happily
provide a full list of the parameters on request.

Figure 3: Two game AI’s pitted against each other on
the map ‘SmallDivide’. In the screenshot, the white
player has captured the centre position.

game cycles per second, this resulted in game observa-
tions being collected every 4.233 seconds.

We acknowledge that the amount of offline storage
should be low for our approach to be considered prac-
tical for implementation in a game-production setting.
We therefore store game observations in a lightweight
fashion, by of each game observation only abstracting
the position and unit-type of each unit. This abstrac-
tion, of approximately 3 KB per observation, provides a
powerful basis for deriving observational features. Ac-
cordingly, a case base was built from 213.005 observa-
tions of 325 games, resulting in case base consisting
of 679 MB of uncompressed observational data. Ap-
proaches are available to further reduce the size of the
case base, such as offline data compression and subse-
quent online data decompression [2] and automatic con-
densation of the case base [3], however these lie outside
the scope of the present research.

We collect observations from games played on the map
‘SmallDivide’. This map is also used for adaptation ex-
periments. The map, illustrated in Figure 3, is a sym-
metrical map without water areas. All games are played
under identical starting conditions.

For offline clustering of observations, k is set to ten per
cent of the total number of observations. Before the
game starts, the initial strategy is determined. While
the game is in progress, action selection is performed
at every phase transition. The parameter N for action
selection is set to 50, and the parameter M is set to 5.
The game action is expressed by the configuration of the
27 parameters of strategic behaviour.

Performance Evaluation

To evaluate the performance of the rapidly adaptive
game AI, we determine to what extent it is capable of
adapting effectively to game circumstances. We perform
three different experiments. First, we test to what ex-
tent the rapidly adaptive game AI is capable of adapting
to the original AAI game AI, set to play in a medium
playing strength. Second, we test to what extent the
rapidly adaptive game AI is capable of adapting to pre-
viously unobserved opponents, which is simulated by
pitting the game AI against the original AAI game AI,
initialised with randomly generated strategies. Third,
we test to what extent the rapidly adaptive game AI is
capable of upholding a tie, when pitted against the orig-
inal AAI game AI, also set to play in a medium playing
strength.
For each of the first two experiments, we perform a trial
where the rapidly adaptive game AI is set to win the
game (i.e., obtain a positive fitness value). For the third
experiment, we set the rapidly adaptive game AI to up-
hold a tie (i.e, maintain a fitness value of 0, while never
obtaining a fitness value less than -10, or greater than
10). To measure how well the rapidly adaptive game AI
is able to maintain a fitness value of 0, the variance in
fitness value is calculated. A low variance implies that
the rapidly adaptive game AI has the ability to consis-
tently maintain a predefined fitness value.
All experimental trials are repeated 25 times, except
the trial where the rapidly adaptive game AI is pit-
ted against randomly generated opponents, which is re-
peated 100 times.

Results

Table 1 gives an overview of the results of the first
and second experiments performed in the Spring game.
Figure 4 displays the obtained fitness value as a func-
tion over time of two typical experimental runs. The
results reveal that when pitted against the original AAI
game AI, set to play in a medium playing strength, the
rapidly adaptive game AI effectively obtains a victory
(80% of the experimental runs). This result indicates
that rapidly adaptive game AI is effective in play against
the original AAI game AI.
In addition, the results reveal that when pitted against
the original AAI game AI, initialised with randomly gen-
erated strategies, the rapidly adaptive game AI improves
on the effectiveness of strictly randomised games played
without adaptation mechanism (i.e., a verified effective-
ness of 50%). The obtained improvement in effectiveness
is 8%. This result indicates that even in randomised play
against the AAI game AI, the rapidly adaptive game AI
is able to find effective strategies in the case-base.
Table 2 gives an overview of the results of the third
experiment. The results reveal that the rapidly adaptive
game AI is capable of upholding a tie for a relatively

Opponent #Games Goal Ach. Goal Ach.(%) Impr.(%)
Original AAI 25 20 80% 30%

Random 100 58 58% 8%

Table 1: Effectiveness of rapidly adaptive game AI.

Average Standard deviation
Time to uphold tie 37 min. 15 min.

Variance in fitness value 2.04 0.59

Table 2: Upholding a tie with rapidly adaptive game
AI.

long time (37 minutes on average), while at the same
time maintaining a relatively low variance in the fitness
value that is strived for.

DISCUSSION

In the experiments that test our implementation of
rapidly adaptive game AI, we observed that the game AI
was well able to achieve a victory when pitted against
the original AAI game AI, set to play in a medium
playing strength. We noticed that the rapidly adaptive
game AI was able to find in the case base a strategy
that could effectively defeat the original AAI game AI.
As the original AAI game AI is not able to adapt its
behaviour, the rapidly adaptive game AI could exploit
its discovery indefinitely. Note that in some cases, the
rapidly adaptive game AI did not win the game, despite
it exhibiting strong behaviour. Such outliers cannot be
avoided due to the inherent randomness that is typi-
cal to video games. For instance, in the Spring game,
the most powerful unit is able to destroy a Commander
unit with a single shot. Should the Commander be de-
stroyed in such a way, the question would arise if this
was due to bad luck, or due to an effective strategy of
the opponent. For game AI to be accepted as effective
players, one could argue, recalling the previously men-
tioned need for consistent AI behaviour, that game AI
should not force a situation that may be regarded as the
result of lucky circumstances.
In addition, we observed that even in randomised play
against the AAI game AI, the rapidly adaptive game
AI is able to find effective strategies in the case base,
and was thereby able to improve on the randomised
performance by 8%. This is a satisfactory result. As
randomised play may be considered a simulated way
to test the game AI against previously unobserved op-
ponents, naturally, the question remains if the perfor-
mance in randomised play can be further enhanced. We
discuss two approaches to enhance the performance in
randomised play.
First, note that our case-base currently consists of ob-
servations collected over 325 games. For randomised
play, determined by 27 pseudo-randomised behavioural
parameters, it would be beneficial to collect more games
in the case base in order to increase the probability

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

35
3

36
9

38
5

40
1

41
7

43
3

44
9

46
5

48
1

49
7

51
3

52
9

54
5

56
1

57
7

59
3

60
9

62
5

64
1

65
7

67
3

68
9

−10

−5

0

5

10

15

20

25

Win
Tie

time step

fitn
es

s v
alu

e

Figure 4: Obtained fitness values as a function over time, when pitted against the original AAI game AI. The figure
displays a typical experimental result of (1) the rapidly adaptive game AI set to win the game, and (2) the rapidly
adaptive game AI set to uphold a tie.

of it containing effective game strategies. As rapidly
adaptive game AI can be expected to be applied in the
playtesting phase of game development, and predictably
in multi-player games, the case base in practical applica-
tions is expected to grow rapidly to contain a multitude
of effective strategies.

Second, we observed that the final outcome of a Spring
game is largely determined by the actions performed in
the beginning of the game. This exemplifies the im-
portance of initialising the game AI with effective be-
haviour. In order to do so, one needs to accurately deter-
mine the opponent one will be pitted against. In video-
game practice, (human) game opponents do not exhibit
behaviour as random as in our experimental setup, but
will typically exhibit behaviour that can be abstracted
into a limited set of opponent models. Previous research
has shown that even in complex RTS games such as
Spring, accurate models of the opponent player can
be established [17]. We will therefore follow the expert
opinion that game AI should not so much be focussed
on directly exploiting current game observations, but
should rather focus on effectively applying models of
the opponent in actual game circumstances [16].

In addition, we found the rapidly adaptive game AI to
be able to uphold a tie for a relatively long time, while
at the same time maintaining a relatively low variance
in the fitness value that is strived for. This ability may
be regarded as a straightforward form of difficulty scal-
ing. If a metric can be established that represents the
preferred level of challenge for the human player, then in
theory the rapidly adaptive game AI would be capable
of scaling the difficulty level to the human player. Such
a capability provides an interesting challenge for future
research.

CONCLUSIONS AND FUTURE WORK

In this paper we discussed an approach to establish
rapidly-adaptive game AI. In the approach, domain
knowledge is gathered automatically by the game AI,
and is immediately (i.e., without trials and without
resource-intensive learning) utilised to evoke effective
behaviour. In our implementation of the approach,
game observations are collected in a case base. Sub-
sequently, the case base is used to extract an evaluation
function, and gathered cases are directly utilised by an
adaptation mechanism. Results of experiments that test
the approach in the Spring game show that rapidly
adaptive game AI can effectively obtain a victory and
is capable of upholding a tie for a relatively long time.
From these results, we may conclude that the estab-
lished rapidly adaptive game AI provides a strong basis
for effectively adapting game AI in actual video games.
For future work, we will extend the established rapidly
adaptive game AI with a means to scale the difficulty
level to the human player. Subsequently, we will inves-
tigate how our approach to rapidly adapting game AI
can be improved by incorporating opponent models.

ACKNOWLEDGEMENTS

This research is funded by a grant from the Nether-
lands Organization for Scientific Research (NWO grant
No 612.066.406) and is performed in the framework of
the ROLEC project.

REFERENCES

[1] Agnar Aamodt and Enric Plaza. Case-based rea-
soning: Foundational issues, methodological varia-
tions, and system approaches. AI Communications,
7(1), March 1994.

[2] Samir Abou-Samra, Claude Comair, Robert Cham-
pagne, Sun Tjen Fam, Prasanna Ghali, Stephen
Lee, Jun Pan, and Xin Li. Data compression/de-
compression based on pattern and symbol run
length encoding for use in a portable handheld
video game system. US Patent 6416410, 2002.

[3] F. Angiulli and G. Folino. Distributed nearest
neighbor-based condensation of very large data
sets. IEEE Transactions on Knowledge and Data
Engineering, 19(12):1593–1606, 2007.

[4] Sander Bakkes and Pieter Spronck. AI Game Pro-
gramming Wisdom 4, chapter Automatically Gen-
erating Score Functions for Strategy Games, pages
647–658. Charles River Media, Hingham, MA.,
U.S.A., 2008.

[5] Sander Bakkes, Pieter Spronck, and Jaap van den
Herik. Phase-dependent evaluation in rts games. In
Mohammad Mehdi Dastani and Edwin de Jong, ed-
itors, Proceedings of the 19th Belgian-Dutch Con-
ference on Artificial Intelligence (BNAIC), pages
3–10. Universiteit Utrecht, The Netherlands, 2007.

[6] Michael Buro and Timothy M. Furtak. RTS games
and real-time AI research. In Proceedings of the
BRIMS Conference. Arlington VA, 2004.

[7] Pedro Demasi and Adriano J. de O. Cruz. Online
coevolution for action games. International Journal
of Intelligent Games and Simulation, 2(3):80–88,
2002.

[8] Roger Evans. AI Game Programming Wisdom,
chapter Varieties of Learning, pages 571–575.
Charles River Media, 2002.

[9] J. A. Hartigan and M. A. Wong. A k-means clus-
tering algorithm. Applied Statistics, 28(1):100–108,
1979.

[10] Stefan Johansson, Jelmer Cnossen, and Tomaz Ku-
naver. Spring game engine. http://spring.clan-
sy.com/, 2007.

[11] S Johnson. AI Game Programming Wisdom 2,
chapter Adaptive AI: A Practical Example, pages
639–647. Charles River Media, Inc., Hingham, MA,
2004.

[12] Ronni Laursen and Daniel Nielsen. Investigating
small scale combat situations in real-time-strategy
computer games. Master’s thesis, Department of
computer science, University of Aarhus, Denmark,
2005.

[13] L. Liden. AI Game Programming Wisdom 2, chap-
ter Artificial Stupidity: The Art of Making Inten-
tional Mistakes, pages 41–48. Charles River Media,
Inc., Hingham, MA, 2004.

[14] Lev Manovich. The Language of New Media. The
MIT Press, Cambridge, Massachusetts, U.S.A.,
2002.

[15] Alexander Nareyek. AI in computer games. ACM
Queue, 1(10):58–65, 2004.

[16] Steve Rabin. AI Game Programming Wisdom 4,
chapter Preface - What’s happening to learning?,
pages ix – xi. Charles River Media, Inc., 2008. ISBN
1-584-505230.

[17] Frederik Schadd, Sander Bakkes, and Pieter
Spronck. Opponent modeling in real-time strategy
games. In Marco Roccetti, editor, Proceedings of
the GAME-ON 2007, pages 61–68, 2007.

[18] Alexander Seizinger. AI:AAI. Creator of the game
AI ‘AAI’, http://spring.clan-sy.com/wiki/AI:AAI,
2006.

[19] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-
Kuyper, and Eric Postma. Adaptive game AI with
dynamic scripting. Machine Learning, 63(3):217–
248, 2006.

[20] Richard S. Sutton. Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3:9–
44, 1988.

[21] Laurie N. Taylor. Video games: Perspective, point-
of-view, and immersion. Masters thesis, Graduate
Art School, University of Florida, U.S.A., 2002.

[22] Paul Tozour. AI Game Programming Wisdom (ed.
Rabin, S.), chapter The Perils of AI Scripting,
pages 541–547. Charles River Media, 2002.

