
Monte-Carlo Tree Search: A New Framework for Game AI

Guillaume Chaslot, Sander Bakkes, Istvan Szita and Pieter Spronck∗

Universiteit Maastricht / MICC
P.O. Box 616, NL-6200 MD Maastricht, The Netherlands
{g.chaslot, s.bakkes, i.szita, p.spronck}@micc.unimaas.nl

Abstract

Classic approaches to game AI require either a high
quality of domain knowledge, or a long time to gen-
erate effective AI behaviour. These two characteristics
hamper the goal of establishing challenging game AI.
In this paper, we put forward Monte-Carlo Tree Search
as a novel, unified framework to game AI. In the frame-
work, randomized explorations of the search space are
used to predict the most promising game actions. We
will demonstrate that Monte-Carlo Tree Search can be
applied effectively to (1) classic board-games, (2) mod-
ern board-games, and (3) video games.

Introduction
When implementing AI for computer games, the most im-
portant factor is the evaluation function that estimates the
quality of a game state. The classic approach is to use heuris-
tic domain knowledge to establish such estimates. However,
building anadequateevaluation function based on heuris-
tic knowledge for a non-terminal game state is a domain-
dependant and complex task. It probably is one of the main
reasons why game AI in complex game-environments did
not achieve a strong level, despite intensive research and ad-
ditional use of knowledge-based methods.

In the last few years, several Monte-Carlo based tech-
niques emerged in the field of computer games. They have
already been applied successfully to many games, includ-
ing POKER (Billings et al. 2002) and SCRABBLE (Sheppard
2002). Monte-Carlo Tree Search (MCTS), a Monte-Carlo
based technique that was first established in2006, is imple-
mented in top-rated GO programs. These programs defeated
for the first time professional GO players on the9×9 board.
However, the technique is not specific to GO or classical-
board games, but can be generalized easily to modern board-
games or video games. Furthermore, its implementation is
quite straightforward. In the proposed demonstration, we
will illustrate that MCTS can be applied effectively to (1)
classic board-games (such as GO), (2) modern board-games
(such as SETTLERS OFCATAN), and (3) video games (such
as the SPRING RTS game).

∗This research was funded by a grant from the Netherlands Or-
ganization for Scientific Research (NWO grant No 612.066.406
and grant No 612.006.409).

Selection Expension Simulation Backpropagation

The selection function is applied
recursively until a leaf node is

reached

One or more nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until
a leaf node is reached

One or more nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

 Repeated X times

Figure 1: Outline of a Monte-Carlo Tree Search.

Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS), illustrated in Figure 1, is
a best-first search technique which uses stochastic simula-
tions. MCTS can be applied to any game of finite length.
Its basis is the simulation of games where both the AI-
controlled player and its opponents play random moves, or,
better, pseudo-random moves. From a single random game
(where every player selects his actions randomly), very lit-
tle can be learnt. But from simulating a multitude of random
games, a good strategy can be inferred. The algorithm builds
and uses a tree of possible future game states, according to
the following mechanism:

Selection While the state is found in the tree, the next action
is chosen according to the statistics stored, in a way that
balances between exploitation and exploration. On the
one hand, the task is often to select the game action that
leads to the best results so far (exploitation). On the other
hand, less promising actions still have to be explored, due
to the uncertainty of the evaluation (exploration). Several
effective strategies can be found in Chaslot et al. (2006)
and Kocsis and Szepesvári (2006).

Expansion When the game reaches the first state that can-
not be found in the tree, the state is added as a new node.
This way, the tree is expanded by one node for each sim-
ulated game.

Simulation For the rest of the game, actions are selected at
random until the end of the game. Naturally, the adequate
weighting of action selection probabilities has a signifi-
cant effect on the level of play. If all legal actions are
selected with equal probability, then the strategy played

is often weak, and the level of the Monte-Carlo program
is suboptimal. We can use heuristic knowledge to give
larger weights to actions that look more promising.

Backpropagation After reaching the end of the simulated
game, we update each tree node that was traversed during
that game. The visit counts are increased and the win/loss
ratio is modified according to the outcome.

The game action finally executed by the program in the
actual game, is the one corresponding to the child which was
explored the most.

Application to Classic Board-Games
Classic board-games, i.e., two-player deterministic games
with perfect information, have been submitted to intensive
AI researched. Using the alpha-beta framework, excel-
lent results have been achieved in the game of CHESS and
CHECKERS. However, alpha-beta only works well under
two conditions: (1) an adequate evaluation function exists,
and (2) the game has a low branching factor. These two con-
ditions are lacking in numerous classical board-games (such
as GO), modern board-games and video games. As an al-
ternative to alpha-beta, researchers opted the use of MCTS.
Initially, the use of randomised simulations in classic board-
games was criticised by researchers. However, it was later
shown that MCTS is able to use highly randomised and
weakly simulated games in order to build the most powerful
GO-programs to date. It is noticeable that the best programs
were built by people who only knew the rules of GO, and
were not able to play the game at a strong level themselves.

In our demonstration, we will present our program
MANGO, which is a top-rated GO program. We will use
graphical tools to demonstrate how MANGO focuses its
search on the most promising moves. We will emphasise
that MCTS without any expert knowledge can still achieve a
reasonable level of play.

Application to Modern Board-Games
Modern board-games (also called ‘Eurogames’) are becom-
ing more and more popular since their (re)birth in the 1990’s.
The game SETTLERS OF CATAN can be considered an
archetypical member of the genre. Modern board-games are
of particular interest to AI researchers because they provide
a direct link between classic (two-player, perfect informa-
tion) board-games and video games. On the one hand, state
variables of most modern board-games are discrete, and de-
cision making is turn-based. On the other hand, the game-
play in modern board-games often incorporates randomness,
hidden information, multiple players, and a variable initial
setup that makes it impossible to use opening books.

SETTLERS OF CATAN has several computer implemen-
tations, which typically feature a hand-designed, rule-based
AI. The strength of these AI’s varies, but an experienced
player can defeat them easily. Few research papers are avail-
able on autonomous learning in SETTLERS OFCATAN , and
according to the results reported therein, they are far from
reaching human-level play yet. In our demonstration, we
will show that MCTS outperforms previous heuristic game

AI’s in SETTLERS OFCATAN , and provides a challenging
opponent for humans.

Application to Video Games
Video games present a complex and realistic environment
in which game AI is expected to behave realistically (i.e.,
‘human-like’). When implementing AI in video games, ar-
guably the most important factor is the evaluation function
that rates the quality of newly generated game AI. Due to the
complex nature of video games, the determination of an ad-
equate evaluation function is often a difficult task. Still,ex-
periments performed in the SPRING RTS game have shown
that is is possible to generate an evaluation function that
rates the quality of game AI accurately before half of the
game is played (Bakkes and Spronck 2008). However, it
is desirable that accurate ratings are established even more
early, when adaptations to game AI can influence the out-
come of a game more effectively.

Monte-Carlo simulations provide a powerful means to ac-
curately rate the quality of newly generated game AI, even
early in the game. In our demonstration, we will show how
we abstract the SPRING RTS game for use of MCTS simu-
lation. The abstraction contains, among others, the position
of each unit in the game, and the game strategy employed
by all players. In the Monte-Carlo simulations, simulation
data is incorporated from a case-base of previously played
games. We will emphasise that in complex video-games, ef-
fective game AI may be established by using MCTS, even
with highly randomised and weakly simulated games.

Conclusions
In this paper, we put forward Monte-Carlo Tree Search
(MCTS) as a novel, unified framework to game AI. In the
framework, randomized explorations of the search space are
used to predict the most promising game actions. We state
that MCTS is able to use highly randomised and weakly sim-
ulated games in order to established effective game AI. In
demonstrations, we will show that MCTS can be applied
effectively to (1) classic board-games, (2) modern board-
games, and (3) video games.

References
Bakkes, S., and Spronck, P. 2008.AI Game Program-
ming Wisdom 4. Charles River Media, Hingham, MA.,
U.S.A. chapter Automatically Generating Score Functions
for Strategy Games, 647–658.
Billings, D.; Davidson, A.; Schaeffer, J.; and Szafron, D.
2002. The challenge of poker.AI 134(1):201–240.
Chaslot, G.-B.; Saito, J.-T.; Bouzy, B.; Uiterwijk, J.; and
van den Herik, H. 2006. Monte-Carlo Strategies for Com-
puter Go. InProceedings of the 18th Belgian-Dutch Con-
ference on Artificial Intelligence, 83–90.
Kocsis, L., and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. InMachine Learning: ECML 2006, Lec-
ture Notes in Artificial Intelligence 4212, 282–293.
Sheppard, B. 2002. World-championship-caliber scrabble.
Artificial Intelligence134(1):241–275.

