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Abstract

In game-playing, a challenging topic is to investigate an eval-
uation function that accurately predicts which player will be
the winner of a two-player match. Our work investigates to
what extent it is possible to predict the winner of a StarCraft
match, regardless of the races that are involved. We developed
models for individual match types, and also general models
for predicting the winner of non-symmetric matches, sym-
metric matches, and general matches. The contribution of this
paper is (1) a generic and relatively accurate model for winner
prediction in StarCraft, and (2) a detailed analysis of which
features are the principal component in accurately predicting
the winner in this complex game. Specially, our results show
that we can predict the winner of a match with an accuracy of
more than 63% in average over all time slices, regardless of
the time slice and the combination of the match types. A study
of which features are most important for the prediction of the
match results, shows that the economic aspects of StarCraft
matches are the strongest predictors for winning, followed by
the use micro commands.

Introduction
Among AI researchers, Real-Time Strategy (RTS) games
have been a popular research domain in the past decade.
In particular, the complex, partially observable, and dy-
namic environments of RTS games motivate AI researchers
to study different approaches and techniques to create strong
AI, analyzing the games, and modeling players. In Partic-
ular, winner prediction is a highly relevant topic of AI re-
search. In StarCraft, winner prediction is challenging be-
cause players have many action choices, in a discrete en-
vironment where players manage their units concurrently.
Moreover, the strategy of players depends on the match type.
This increases the complexity of winner prediction.

StarCraft has been a popular RTS game since 1998. In
StarCraft, players gather resources to strengthen their econ-
omy. To provide military power, they must spend resources
to construct buildings, research new technologies, and train-
ing units. The goal of the game is to destroy all of the op-
ponent’s bases and armies. StarCraft has various maps that
differ in dimension, arrangement of resources, and the areas
that are build-able and walk-able.
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Figure 1: Terran vs. Zerg

StarCraft includes three different playable races: Terran,
Zerg, and Protoss. The player chooses one of the races
to play at the start of a match. While the races are well-
balanced, they each need a different playing style. Very gen-
erally speaking, Terran are defensively strong and employ
slow units, Zerg are offensively strong and employ fast units,
and Protoss form a middle ground. Figure 1 shows a battle
between Terran and Zerg.

Since each race needs a different playing style, using a
playing style that is not fitting the chosen race may very well
lead to defeat. It is possible to recognize a playing style al-
ready early in a game, meaning that sometimes it is possible
to accurately predict the ultimate winner of a match already
in the first few minutes of the match.

By analyzing replays from StarCraft competitions, we can
use our model as an internal evaluation function for bots
to improve their game play. Winner prediction in matches
where a player faces an AI bot tends to be relatively easy:
AI bots are fairly weak players and tend to lose against play-
ers who have some experience with the game. Consequently,
considerable research has been invested in this area to make
AI bots stronger players. In human vs. human matches, win-
ner prediction is not as straightforward.

To our knowledge, the only study into winner prediction
for StarCraft in human vs. human matches was limited to
both players using Protoss (Erickson and Buro 2014). In our
study, we investigate winner prediction both for symmetric



matches (Protoss vs. Protoss, Zerg vs. Zerg, Terran vs. Ter-
ran) but also for non-symmetric matches (Protoss vs. Terran,
Protoss vs. Zerg, Terran vs. Zerg). We compare the relative
importance of match and player skill and style features for
the purpose of winner prediction.

We pose the following questions:
• To what extent is it possible to predict the winner for non-

symmetric matches?
• To what extent is it possible to design a general model for

winner prediction in all matches?
• What is the comparative importance of individual features

for the winner prediction?
• Is there a difference in relative importance of features for

non-symmetric and symmetric matches?
In the following sections, we present related work; then,

an overview of our method, the dataset that we used, and the
features that we extracted are described in the method sec-
tion. We continue with the experimental setup and results.
Afterwards, we discuss about the results. Finally, we men-
tion the conclusions that we draw.

Related work
In our research, we build a model of StarCraft players. This
is a challenging task, as RTS games have a very large state
space (Robertson and Watson 2015) and are only partially
observable (Ontanón et al. 2013).

Player modeling encompasses a player’s in-game be-
havior (Robertson and Watson 2015; Ortega et al. 2013;
Yannakakis et al. 2013; Holmgård et al. 2014) including ac-
tions, skills, and strategies. Player modeling in RTS games
has been studied from different perspectives. Gagné et al
(Gagné, El-Nasr, and Shaw 2011) used telemetry and visual-
ization to understand how players learn and play a basic RTS
game. They reported that their approach does not suffice to
understand players.

Since RTS games are partially observable, not all behav-
iors of an opponent can be known at all times. To model the
opponent, different techniques have been used. Schadd et
al (Schadd, Bakkes, and Spronck 2007) classified an oppo-
nent’s playing style and strategy in the RTS game SPRING.
They found it difficult to determine opponent strategy in the
early game. Dereszynski et al (Dereszynski et al. 2011) suc-
cessfully used a statistical model for predicting opponent be-
havior and strategy in StarCraft.

Multiple researchers have investigated detection of player
skills in RTS games. Avontuur et al (Avontuur, Spronck, and
Van Zaanen 2013) built a model to determine a player’s
StarCraft league based on observations of player features
during the early game stages. Thompson et al (Thompson
et al. 2013) examined the differences between player skills
across the leagues. They reported that experts have auto-
mated many behaviors, i.e., the higher a player’s skill, the
less control they need to to spend on basic game tasks, and
thus have room to develop other skills.

Park et al (Park et al. 2012) and Hsieh and Sun (Hsieh and
Sun 2008) predict opponent strategy by analyzing build or-
ders. In (Synnaeve and Bessiere 2011) Synnaeve and Pierre

presented a Bayesian model to predict the first strategy of
the opponent in RTS games. Hsieh and Sun used case-based
reasoning for this purpose. They managed to model differ-
ent strategies that could then be recognized. They did this
for all three races. On a limited winner-prediction scale,
Stanescu et al (Stanescu et al. 2013) showed that the win-
ner of a small battle in StarCraft can be predicted with high
accuracy. Bakkes et al (Bakkes, Spronck, and van den Herik
2007) predicted the outcome of the RTS game SPRING us-
ing the phase of the game. Hsu et al in (Hsu, Hung, and Tsay
2013) utilized an evolutionary method to predict the win-
ning rate between EISBot and human player for ZvZ, ZvT,
and ZvP match types. They formulated the winner predic-
tion as an optimization task. Their approach achieved 61%
accuracy on average for ZvZ and less than 2% for ZvT and
ZvP.

Predicting match up outcome is more challenging than
combat outcome. During the match up, players lose their
units or buildings during combats that affect the math up
outcome. Meanwhile, the number of units and their loca-
tions changes and thus, the player has to adjust his strategy.
If a suitable prediction model can be built, an interesting ap-
plication would be the possibility of game personalization.
Moreover, it can be used as an evaluation function to design
AI bots that behave like human players.

Closest to what we intend to do with our research, is the
work by Erickson et al (Erickson and Buro 2014), who used
state evaluation to predict the winner of a StarCraft match in
human vs. human play. They limited themselves to symmet-
ric matches between Protoss players in games of a particular
length. In contrast, in our work we investigate all races, in
all possible match ups, with less limitation on game length.

Method
Overview of the method
StarCraft is a zero-sum game, but in some matches there is
no winner in our replays. Therefore, we filtered the matches
that do not have a winner, and we represent the winner
prediction as a binary classification problem: win(1), and
lose(0).

We follow two approaches: individual models for each
match type, and mixed models. The individual models in-
clude six binary classifiers for PvT, PvZ, TvZ, PvP, ZvZ,
and TvT matches. We used P, T, and Z for Protoss, Ter-
ran, and Zerg races respectively. The mixed models in-
clude the following tree binary classifiers: a model for non-
symmetric matches (PvT, PvZ, and TvZ), a model for sym-
metric matches (PvP, ZvZ, and TvT), and a general model
for all matches.

Data
We used the dataset that was provided by (Robertson and
Watson 2014). This dataset has been created based on hu-
man vs. human replays from professional players that were
collected by Synnaeve et al (Synnaeve and Bessiere 2012).
The database includes replay data and state information pro-
vided by the Brood War API (BWAPI).



Table 1: Number of replays in the used database (Robertson
and Watson 2014).

Race PvT PvZ TvZ PvP ZvZ TvT
Number of replays 2017 840 812 392 199 395
Number of replays(After filtering) 1490 579 612 263 115 298

Table 1 shows the number of replays for each match type.
We filtered the replays to exclude replays with a length of
less than 10 to have reasonable data for feature extraction.
Also, we removed replays with a length more than 50 min-
utes, in order to limit the diversity of the replays’ length.

We computed the fractions of victories in non-symmetric
matches in our dataset. The results show Protoss won a frac-
tion of 0.55 of the matches vs. Terran and 0.51 vs. Zerg. The
winning rate of Terran vs. Zerg was 0.56. This implies that
the winner/loser classes are balanced in our dataset with re-
spect to the percentage of winning in different match types.

In the dataset, each match is played on a unique map.
In StarCraft, the size of a map is measured as the number
of tiles. In our dataset, over 60% of maps have a size of
128 × 128 tiles. All other maps are smaller, with the small-
est measuring 96× 128 tiles.

Features
In this section, we explain how features are extracted
from the dataset. The features are time-dependent or time-
independent. The time-dependent features are extracted for
each player in 10-second intervals. We extracted unspent re-
sources and income as follows (Erickson and Buro 2014): Rt

is the total of resources (minerals and vespene gas) at time
t (increments in intervals of 1 seconds), and T is the passed
time in seconds (T always being a multiple of 180 seconds).
The unspent resources U (i.e., how many resources are avail-
able on average at any given time) are calculated as:

U = (
∑

t=1,2,...,T

Rt)/T

The income I is computed as the total resources Rtot col-
lected over time T , averaged per second:

I = Rtot/T

For each feature, over the last 3 minutes we calculated
the mean, the variance, and the difference between the two
players. For instance, let bt denote the number of build com-
mands during t, t being a multiple of 10 seconds. Then,
BT is an array of bt during last 180 seconds: BT =
[bt1 , bt2 , ..., bt18 ]. We computed mean(BT ) and var(BT ).
In addition, if bAt

, and bBt
are number of build commands

for player A and B during during 10-second interval t, the
difference between players A and B in the number of build
commands for the past 180 seconds is calculated as:

dT =

T∑
t=T−180

(bAt
− bBt

)

Table 2: Proposed features

Time-dependent Time-independent
move number of regions
build buildable ratio tiles
tech walkable ratio tiles
hold average of choke distances
siege height levels ratio
burrow map dimension
micro
macro
control
strategy
tactic
unique regions
region value
commands diversity

The list of proposed features are summarized in table 2.
The data set also included a race indicator. After the filter-
ation, we collected 24k, 9k, and 9k samples for PvT, PvZ,
and TvZ respectively. For symmetric matches, we have 3K,
1K, and 4K samples for PvP, ZvZ, and TvT respectively.

Time-dependent features
Expert players use time more efficiently when they play
StarCraft (Thompson et al. 2013). To capture skills of play-
ers in this regard, we used the following features.

First, we counted the frequency of commands for each
match type, and we found that the most frequent commands
include: move, build, tech, hold, siege, and burrow. The or-
der of command frequencies differs across the match types.

We categorized the commands into micro and macro com-
mands. A command is considered micro if it does not cost
minerals or gas; otherwise, it is considered macro. Then, we
computed the number of micro and macro commands during
each 10 seconds for each player.

Inspired by (Ontanón et al. 2013), we put the commands
in one of three categories: control, strategy, and tactic com-
mands. We computed the number of commands in each cat-
egory for 10 seconds intervals per player.

Regions are extracted by the method that authors in
(Perkins 2010) proposed. A region include adjacent walk-
able tiles that do not include choke points. We counted the
number of unique regions that have a building for a player
during each 10 seconds. The game assigns buildings differ-
ent values. For a player we also stored the sum of the build-
ing values minus the sum of the opponent’s building values
as region value.

Time-independent features
To study the effect of maps on the winner prediction, we
recorded some features that reflect the static characteristics
of the map. The size of the map is indicated by the total
number of regions.

Maps contain different areas, including; buildable areas,
walkable areas and average of choke distances. The height



Table 3: Winner prediction performance across non-
symmetric matches in terms of accuracy. A=APM and
economy features, B=time-dependent features, C=time-
independent features

Model Features PvT PvZ TvZ PvP ZvZ TvT
baseline 0.55 0.51 0.56 0.50 0.50 0.50
RF A,B,C 0.591 0.611 0.502 0.502 0.515 0.491
GBRT A,B,C 0.595 0.623 0.502 0.502 0.507 0.483
RF A,B 0.644 0.634 0.624 0.643 0.582 0.639
GBRT A,B 0.637 0.634 0.624 0.639 0.581 0.635

of an area is one of six different height levels. For each map,
we counted the number of buildable tiles, and we computed
the ratio of the total number of buildable areas to the total
number of tiles.

We did the same for the other types of areas. Since maps
have different dimensions, we included the dimension of the
map in terms of length and width as number of tiles.

Experimental setup
In this section, we explain our winner prediction models
across the StarCraft races that are mentioned in section .

We formulated the winner prediction as a binary classifi-
cation task to predict if a player wins (1) or loses (0). As the
first step, we designed an individual model for each match
type. Then, we mixed the models to combine the winner pre-
dictions for different match types.

The individual models are six binary classifiers for win-
ner prediction for PvT, PvZ, TvZ, PvP, ZvZ, and PvP
matches. The three mixed models are: a model only for non-
symmetric matches, a model only for symmetric matches,
and a model for all matches (general model).

We employed two state-of-the-art classification meth-
ods: Gradient Boosting Regression Trees (GBRT) (Fried-
man 2002) and Random Forest (RF) (Breiman 2001). These
are implemented in the Scikit-learn Python package.

GBRT uses ensemble of trees to learn the target variable.
It is robust to different features, does not need to normalize
the inputs, and it can handle non-linear dependencies be-
tween the feature values and the output. Moreover, it com-
putes feature importance that is a value in [0, 1]. The higher
values shows the most important feature. RF has shown high
performance in many classification tasks. It is an ensemble
of decision tree classifiers, but it can handle the overfitting
issue in decision trees.

We did 10-fold cross validation on the samples. To avoid
bias, for any match the samples are either in the training set
or in the test set, but not in both.

Results
In this section, we present the results of our approaches for
winner prediction in StarCraft. The first approach uses indi-
vidual models for each match type, and the second approach
uses mixed models.

Table 4: Winner prediction performance across mixed match
types in terms of accuracy. A=APM and economy features,
B=time-dependent features, C=time-independent features

Model Features NonSym Sym General
RF A,B,C 0.575 0.497 0.591
GBRT A,B,C 0.577 0.499 0.593
RF A,B 0.639 0.637 0.639
GBRT A,B 0.635 0.634 0.635

Prediction per match type
The winner prediction results across the match types are
summarized in table 3. The table also includes the baseline
victory fractions. The baseline represents the majority win-
ning rate in all match types according to our dataset. The
performance of the models is presented in terms of accu-
racy. The features are grouped into three categories: Cat-
egory A contains actions per minute (APM), income, and
unspent resources, category B contains time-depended fea-
tures, and category C contains time-independent features.
We compared the performances in two cases: modeling us-
ing all mentioned features (A,B,C), and modeling exclud-
ing time-independent features (A,B). The reason to exclude
the time-independent features from the second modeling ap-
proach is that player strength, and therefore chances at vic-
tory, tend not to be influenced by static map features, which
are the core of category C.

We attempted to improve the results for both approaches
by employing random forest for feature selection, but we
did not observe a significant improvement in the predictions.
Therefore these results are left out of the paper.

From the table it can be observed that with the (A,B,C)
modeling approach, a small improvement to winner predic-
tion over the baseline can be achieved for PvT and PvZ
matches (for the PvT matches, a very small improvement).
No improvement is achieved for the other matches.

However, for the (A,B) modeling approach, a consider-
able improvement of winner prediction over the baseline is
achieved for all match types.

From these results, we see that time-independent features
seem to have a negative effect on most predictions. Thus,
we may assume that the inclusion of map properties in the
feature set leads to detrimental results of the classification.
Since our data set contains mainly replays of expert players,
it seems that they are capable of incorporating map proper-
ties in their playing style, regardless of match type.

Prediction for mixed match types
As we mentioned earlier, the winner prediction is possible
across the match types by individual models. In the next
step, we are interested to see how accurately we can predict
the match results when we mix the races. Therefore, we em-
ployed three mixed models: one for non-symmetric match
types, one for symmetric match type, and one for all match
type (general model).

The prediction performance of the mixed models are



Table 5: Top time-depended features per match type

PvT PvZ TvZ PvP ZvZ TvT
Income (0.203) Income (0.189) Income (0.198) Income (0.219) Micro (0.233) Income (0.206)
Unspent (0.141) Unspent (0.157) Unspent (0.140) Unspent (0.201) Unspent (0.229) Unspent(0.192)
Micro (0.094) Micro (0.129) Micro (0.140) Micro (0.174) Income (0.217) Micro (0.161)
Control (0.091) Control (0.096) Control (0.095) Control (0.140) Control (0.092) Control (0.134)
Region value (0.076) Region value (0.080) Region value (0.067) Region value (0.033) Region value (0.031) Region value(0.032)
Unique regions (0.052) Unique regions (0.035) Unique regions(0.044) Unique regions (0.030) Slice (0.022) Unique regions(0.027)
Builds (0.020) Slice (0.027) Race (0.027) Slice (0.017) Unique commands (0.012) Slice (0.025)
Slice (0.020) Race (0.024) Slice (0.027) Builds (0.013) Tech (0.008) player distance (0.019)
APM (0.017) Unique commands (0.017) Burrow (0.018) Unique commands (0.009) Unique regions (0.008) Unique commands (0.015)
Unique commands (0.016) Burrow (0.016) Unique commands(0.012) APM (0.009) Tactics (0.007) APM (0.011)

shown in table 4. The first two rows represent the perfor-
mance of the models that use all features, while the last two
rows show the performance for the models without time-
independent features.

The table shows a similar result as found for the mod-
els for the individual match types: when all features are in-
cluded, the models do not perform well, while when time-
dependent features are removed from the data, all models
perform reasonably well with an accuracy of more than 63%,
even for the generalized model that predicts the results for all
match types.

Top features per match type
Table 5 presents the relative importance of top 10 time-
depended features for individual models, of which the re-
sults are given in table 3 as the models for feature sets (A,B).
The importance rates are given between parentheses.

Our feature set includes three variations of features
(mean, variance, and difference between players). For the
top feature list we ignored variations of the features. For in-
stance, if mean and variance of income are amongst the top
features, we only included ‘income’ on the list once; how-
ever, we summed the importance rates for the different vari-
ations of a feature, and ranked them by these sums.

Generally, most features have some predictive value for
each of the match types, and when examining the rank-
ings, we see that they tend to be ordered similarly across
the match types, with some notable exceptions. Income and
unspent resources are always amongst the top three features
for all match types. This shows that having a strong econ-
omy is a an important element to win the a match for any of
the match types.

The biggest exceptions are found for the ZvZ matches.
In ZvZ, micro commands have a stronger predictive value
compared to the other match types. According to the table
5, while the importance rate of micro commands (0.233) in
ZvZ is close to the importance rates of income (0.229) and
unspent (0.229), in the other match types micro commands
are placed in the third rank of the top features, and have
a considerably lower importance rate. This shows that ZvZ
matches have to be approached by the players in a different
way than they approach the other match types.

Control and region value are strong predictive features
across all match types. Control commands are issued on
a unit, and include move, gather, build, and repair; i.e.,

they are a combination of micro and macro commands. Thy
reflect the general process of enriching the economy and
spending resources on buildings. Region value is the differ-
ence between the values of the players’ buildings during the
specified time interval. I.e., it reflects how the resources are
spent to construct buildings.

Top features for mixed match types
The top 10 features, with their importance rates, for each
of the mixed models that do not include time-independent
features, are given in table 6. The importance rates are pre-
sented in parenthesis.

Income is the most predictive feature for all of the mixed
models. For the non-symmetric and symmetric match types,
again income and unspent are the most predictive features.
For the mixed models, unspent is moved to the third place in
the ranking, while region value is in second place – however,
the importance of unspent is still very close to the impor-
tance of region value. This means that for all match types,
economic features play a decisive role in determining the
match outcome.

From the table we can see that the top six features are
the same for each of the combined match types, though they
sometimes appear in a slightly different order. We also see
that of these six features, for symmetric matches, there is a
considerable gap between the importance of the top-4 fea-
tures, and the features on the fifth and sixth place. For the
other two combined match types, that gap is found between
the sixth and seventh ranked features. From this we conclude
that income, unspent, micro, and control are the most impor-
tant features overall, while in non-symmetric matches region
values and unique regions also play a role in determining the
match outcomes.

Discussion
From the results we found, we conclude that including time-
independent features in the data set actually has a detrimen-
tal effect on the classification algorithms, creating classifiers
that perform worse than those created using a data set with-
out these time-independent features. We offer the following
explanation for this observation:

Each match is divided into multiple time-slices (180 sec-
onds); each slice from a match has the same winner, and
also exactly the same time-independent features and thus,
there are correlations among several samples in training set.



Table 6: Top time-depended features for mixed models

non-Sym Sym General
Income (0.181) Income(0.184) Income (0.177)
Unspent (0.118) Unspent(0.150) Region value (0.112)
Region value (0.107) Micro(0.138) Unspent (0.104)
Control (0.074) Control(0.118) Control (0.079)
Micro (0.074) Region value (0.044) Micro (0.071)
Unique regions (0.062) Unique regions (0.043) Unique regions (0.066)
Race (0.028) APM (0.019) Slice (0.023)
Slice (0.025) Slice (0.019) Race (0.023)
APM (0.017) Unique commands (0.016) APM (0.020)
Unique commands (0.017) Builds (0.012) Unique commands (0.018)

Therefore, a classification algorithm may uncover a strong
relationship between these time-independent features and
the ultimate winner. However, since the time-slices of each
match are stored only in one specific fold for the evaluation,
in the fold that is used as test the relationships found in the
folds used for training are non-existent. Therefore, the in-
clusion of time-independent features creates classifiers that
work well on a training set but not as well on a test set.

We surmise that there still might be an interesting rela-
tionship between time-independent features and the ultimate
winner of a match, but such a relationship cannot be found
using our approach with match slices. A separate classifica-
tion run using a data set that only stores features of complete
matches may uncover such relationships.

As for the individual features, we see that the general class
of micro features ranks fairly high in victory prediction, but
that the two most important features (income and unspent)
for winner prediction are both macro features. Therefore
we conclude that while micro commands are important for
winning StarCraft matches, the strategic and tactical aspects
of StarCraft, which are exemplified by macro actions, have
more importance overall.

In this work, we studied winner prediction in non-
symmetric match types by individual models and mixed
models. Our results show that both approaches manage
to predict the winner with a considerably higher accuracy
than the baseline models. The general model for all match
types achieved a performance above 63%. The compara-
tive importance of features shows economic features are the
strongest predictors across match types. The list of the top-
10 features in symmetric models and non-symmetric models
are more or less the same, but the rank and the importance
rate of the features differs.

Conclusion
In this work, we studied the winner prediction of a matches
across StarCraft races using individual and mixed models
for match types. Our work is the first work in comparing
the performance of winner prediction across the races, and
analyzing the relative importance of the features in this task.

The individual models for match types show that winner
prediction is possible for all of the match types, with an ac-
curacy of 63% or higher for all match types except ZvZ, as

long as only time-dependent features are included in the data
set.

Moreover, we designed more general models that contain
non-symmetric match types, symmetric match types, and all
match types. The results show that these mixed models man-
age to predict the match winner, also with an accuracy of
63% or higher.

For all classifiers, the top-10 features used for prediction
are more or less the same, with economic features having
the highest predictive value in all cases, followed by micro
commands.

Our results improve considerably on previous work done
in this area, where only symmetric matches were used, and
where accuracies achieved were much lower than we man-
aged to find. Further improvements might still be possible,
if more detailed features of matches are incorporated in the
data set.
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