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Abstract

Modern video games present an environment in which game Al is expected to behave realistically (i.e.,
‘human-like’). One feature of human-like behaviour of game Al, is the ability to assess accurately the
current situation. This requires an appropriate evaluation function. The high complexity of modern video
games makes the task to generate such an evaluation function for game Al a difficult one. However, we
assume that many difficulties can be solved automatically. Therefore, our aim is to generate fully auto-
matically an evaluation function for game Al. This paper describes our approach, and discusses the ex-
periments performed in the real-time strategy (RTS) game SPRING. Two evaluation terms are established,
one to perform a unit-based evaluation, the other to evaluate positional safety. In addition, a mechanism
is incorporated to perform the evaluation dependent on the phase of the game. From our results we may
conclude that the generated evaluation function effectively predicts the outcome of a SPRING game.

1 Introduction

When implementing Al for modern video games, arguably the most important factor is the evaluation func-
tion that rates the quality of newly generated game Al. Due to the complex nature of modern video games,
generating a suitable evaluation function is often a difficult task. This paper discusses our work on fully
automatically generating a suitable evaluation function for real-time strategy (RTS) games. We aim at util-
ising the evaluation function for adequately adapting game Al to changing circumstances, which is called
‘adaptive game AI’. Adaptive game Al has been explored with some success in previous research [6, 7, 13].
Our approach to generating a suitable evaluation function for RTS games is to use a central data store of
samples of gameplay experiences. This approach can be particularly successful in games that have access to
the Internet and that store and retrieve gameplay samples [12].

The outline of the paper is as follows. Section 2 discusses how we collect domain knowledge of an
RTS game in a data store. In Section 3, we show how we generate an evaluation function for RTS games
automatically, based on the collected data. How information on the phase of the game is incorporated into
the evaluation function is described in Section 4. In Section 5, we test the performance of the generated
evaluation function and provide the experimental results. We discuss the results in Section 6, and in Section
7 provide conclusions and describe future work.

2 Data Store of Gameplay Experiences

We define a gameplay experience as a set of observable features of the environment at a certain point in time.
Gameplay experiences are gathered in an RTS game environment, i.e., a simulated war game. Here, a player
needs to gather resources for the construction of units and buildings. The goal of the game is to defeat an
enemy army in a real-time battle. We use RTS games for their highly challenging nature, which stems from
three factors: (1) their high complexity, (2) the large amount of inherent uncertainty, and (3) the need for
rapid decision making [5]. In the present research we use SPRING [15], which is a typical and open-source
RTS game. A SPRING game is won by the player who first destroys the opponent’s ‘Commander’ unit. To



create a data store of gameplay experiences for the SPRING environment, we start by defining a basic set
of features that will play an essential role in the game. For our first experiments, we decided to use the
following five features.

. Number of units observed (maximum 5000) of each type (over 200),
. Number of enemy units within a 2000 radius of the Commander,

. Number of enemy units within a 1000 radius of the Commander,

. Number of enemy units within a 500 radius of the Commander,

. Percentage of the environment visible to the friendly player.
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SPRING implements a so-called ‘Line of Sight’ visibility mechanism to each unit. This implies that
game Al only has access to feature data of those parts of the environment that are visible to its own units
(illustrated in Figure 1). When the game AI’s information is restricted to what its own units can observe,
we call this an ‘imperfect-information environment’. When we allow the game Al to access all information,
regardless whether it is visible to its own units or not, we call this a ‘perfect-information environment’. We
assume that the reliability of an evaluation function is highest when perfect information is used to generate
it. For our experiments a data store was generated consisting of three different data sets: the first containing
training data collected in a perfect-information environment, the second containing test data collected in a
perfect-information environment, and the third containing test data collected in an imperfect-information
environment.

3 Evaluation Function for RTS Games

This section discusses the automatic generation of an evaluation function for SPRING. The five defined
features are selected as the basis of our evaluation function. To allow the evaluation function to deal with
imperfect information inherent in the SPRING environment, we assume that is it possible to map reliably
the imperfect feature-data to a prediction of the perfect feature-data. Our straightforward implementation of
this mapping, is to scale linearly the number of observed opponent’s units to the non-observed region of the
environment. If opponent’s units are homogenously distributed over the environment, the evaluation func-
tion applied to an imperfect-information environment will produce results close to those of the evaluation
function in a perfect-information environment.

Figure 1: Observation of information in the SPRING game environment. Units controlled by the game Al
are currently residing in the highlighted region. In an imperfect-information environment, only informa-
tion in the highlighted region is available. In a perfect-information environment, information for both the
highlighted and the light-grey region is available.



A general form of the evaluation function for the game’s status is denoted by

v(p) = wpvr + (1 — wp)ve €))

where w € [—1...1] is a free parameter to determine the weight of each term v,, of the evaluation function,
and p € N is a parameter that represents the current phase of the game. In our experiments we use two eval-
uative terms, the term v; that represents the material strength and the term v, that represents the positional
safety.

3.1 Material Strength

Below we discuss the evaluative term v;, that represents the material strength. The term utilises data of
feature number 1 and 5 that is collected in the data store. Term v; is denoted by

v =Y wen, — ) )

where w,, is the experimentally determined weight of the unit u, c,,, is the number of units of type u that the
game Al has, o, is the observed number of opponent’s units of type u, and R € [0, 1] is the fraction of the
environment that is visible to the game Al

3.2 Positional Safety

Below we discuss the evaluative term vs, that represents the safety of the current tactical position. The term
utilises data of feature number 2, 3, 4 and 5 that is collected in the data store. Term v, is denoted by
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where w; is the experimentally determined weight of the radius 7, o,, is the observed number of units of the
game Al within a radius r of the opponent’s ‘Commander’, R, € [0, 1] is the fraction of the environment
that is visible to the opponent within the radius 7, o, is the observed number of units of the opponent within
a radius r of the game AI's ‘Commander’, R,, € [0, 1] is the fraction of the environment that is visible to
the game AI within the radius 7, and d is the set of experimentally determined radii {500, 1000, 2000}.

4 Phase of the Game

The phase of a strategy game can be straightforwardly derived from the observed traversal in the game’s
‘tech tree’. In strategy games, a tech tree is a directed acyclic graph that represents the possible paths a
player can take. The player starts in the root of the tech tree, and by traversing the tech tree will be provided
with advanced levels of technology. Traversing the tech tree typically is advantageous, yet there is a cost of
time and game resources. The tech tree of the SPRING game is provided in Figure 2. In the SPRING game,
three levels of technology are available. At the start of the game a player can only construct so-called level
1 structures and level 1 units. Traversing the tech tree, advanced structures and units of level 2 and level 3
will become available to the player.

Previous research performed in the SPRING environment showed that the accuracy of outcome predic-
tions is closely related to the phase of the game [1, 2]. To distinguish game phases in the SPRING game, we
analogously map existing tech levels to game phases. Additionally, we also regard the transition from one
tech level to another as a game phase. For the SPRING game, this leads us to define the following five game
phases:

Phase 1 Level 1 units observed that have a buildtime < 2500 or Level 1 structures observed!
Phase 2 Level 1 units observed that have a buildtime > 2500.

Phase 3 Level 2 units observed that have a buildtime < 15000, or Level 2 structures observed
Phase 4 Level 2 units observed that have a buildtime > 15000.

Phase 5 Level 3 units or Level 3 structures observed.

By exception, we consider so-called *Construction Units’ to have a relatively short buildtime. In reality, Construction Units have
an unusually long buildtime, which would incorrectly imply that these units are not built early in the game.
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Figure 2: Tech tree of the SPRING game.

5 Experiments

This section discusses experiments that test our approach. We first describe the experimental setup and the
performance evaluation, and then the experimental results.

5.1 Experimental Setup

To test our approach we start collecting feature data in the data store. For each player, feature data was
gathered during gameplay. In our experiments we gathered data of games where two game Als are posed
against each other. Multiple SPRING game Als are available. We found one game AI which was open
source, which we labelled ‘AAI’ [10]. We enhanced this game Al with the ability to collect feature data
in a data store, and the ability to disregard radar visibility so that perfect information on the environment
was available. As opposing game Als, we used AAI itself, as well as three other Als, namely ‘TSI’ [3],
‘CSAT [8], and ‘RAT’ [9]. Table 1 lists the number of games from which we built the data store. The data
collection process was as follows. During each game, feature data was collected every 127 game cycles,
which corresponds to the update frequency of AAIL With 30 game cycles per second this resulted in feature
data being collected every 4.233 seconds. The games were played on the map ‘SmallDivide’, which is a
symmetrical map without water areas. All games were played under identical starting conditions.

FRIENDLY ENEMY #GAMESIN #GAMESIN #GAMESIN

TEAM TEAM TRAINING SET TEST SET TEST SET
(Collected with  (Collected (Collected
perfect with perfect with imperfect
information)  information) information)

AAI AAT (self-play) 500 200 200
AAI TSI 100 200 200
AAI CSAI 100 200 200
AAI RAI - 200 200

Table 1: The number of SPRING games collected in the data store.

We used a MatLab implementation of TD-learning [14] to learn the unit-type weights w,, for the evalua-
tion function of Equation 2. Our application of TD-learning to generate an evaluation function for SPRING is
analogous to its application by Beal and Smith [4] for determining piece values in chess. Unit-type weights
were learned from feature data collected with perfect information from 700 games stored in the training
set, namely all the games AAI played against itself (500), TSI (100), and CSAI (100). We did not include
feature data collected in games where AAI was pitted against RAI, because we wanted to use RAI to test the



generalisation ability of the learned evaluation function. The learning rate o was set to 0.1, and the recency
parameter \ was set to 0.95. Both parameter values were chosen in accordance with the research of Beal and
Smith [4]. The unit-type weights were initialised to 1.0 before learning started. Weights of the radii defined
in the set d were chosen by the experimenter as 0.05 for a radius of 2000, and 0.20 and 0.75 for a radius of
1000 and 500, respectively.

Term-weights for each phase of the game were learned with the gradient descent optimisation algorithm
[11]. A step value of 0.01 was used initially to allow the algorithm to explore the state space using ran-
dom jumps. Slowly, the step value was decreased to 0.001, to encourage the algorithm to perform a local
optimisation at the end. Term weights for each phase were initialised to 0.5 before learning started.

5.2 Performance Evaluation

To evaluate the performance of the learned evaluation functions, we determined to what extent it is capable of
predicting the actual outcome of a SPRING game. For this purpose we defined the measure ‘final prediction
accuracy’ as the percentage of games of which the outcome is correctly predicted just before the end of
the game. A high final prediction accuracy indicates that the evaluation function has the ability to evaluate
correctly a game’s status.

It is imperative that an evaluation function can evaluate a game’s status correctly at the end of the game,
and desirable throughout the play of a game. We defined the measure ‘weak turning point’ as the time at
which at least 50% of the outcomes of the test games is predicted correctly. We defined the measure ‘normal
turning point’ and ‘strong turning point’ as the time at which at least 60% and 70% of the outcomes of the
test games is predicted correctly, respectively. Since not all games last for an equal amount of time, we
scaled the game time to 100% by averaging over the predictions made for each data point. A low turning
point indicates that the evaluation function can correctly evaluate a game’s status early in the game.

We determined the performance using two test sets. One test set contains feature data collected in a
perfect-information environment, the other feature data collected in an imperfect-information environment.
Feature data is collected of 800 games, where AAI is posed against itself (200), TSI (200), CSAI (200), and
RAI (200). We first tested the evaluation function in a perfect-information environment. Subsequently, we
tested the evaluation function in an imperfect-information environment.

Optimising Term Weights Results

Table 2 displays the resulting weights for each term of the evaluation function. The term weights have been
learned dependent on the phase of the game. We observe that when evaluating by use of the learned weights,
the evaluation function’s ability to predict the outcome of the game increases. The most significant increase
in prediction performance is observed in the phases the game resides in the most (i.e., phase one and phase
three).

Phase  Gameplay Initial Outcomes Learned Outcomes  Performance
(V] Samples Weights Correctly Weights Correctly  Increase (%)
Predicted w. Predicted w.
Initial Learned
Weights Weights
1 96,966 0.5 30,649 -0.370 38,451 25.5%
2 74,570 0.5 43,150 0.017 44,048 2.1%
3 97,892 0.5 43,441 -0.001 64,495 48.5%
4 46,535 0.5 35,4604 0.079 36,139 1.9%
5 14,784 0.5 12,365 0.041 12,401 0.3%

Table 2: Learned term weights for each of the five defined phases.

Final Prediction Accuracy Results

Table 3 lists the final prediction accuracy for the trials where AAI was pitted against each of its four oppo-
nent Als. When evaluating by use of the learned weights, instead of the initial weights, we observe a sig-
nificant improvement in the final prediction accuracy. For the evaluation function in a perfect-information



environment the final prediction accuracy is 97% on average. For the evaluation function in an imperfect-
information environment, the final prediction accuracy is 90% on average. From these results, we may
conclude that the established evaluation function provides an effective basis for evaluating a game’s status.

FINAL PREDICTION FINAL PREDICTION
AAI-AAI ACCURACY AAI-CSAI ACCURACY
learned 99% | 92% learned 98% | 93%
weights weights
fuitial 90% | 86% irifial 86% | 87%
weights weights
AAI-TSI AAI-RAI
learned 96% | 88% leamed 95% [ 87%
weights weights
dnitial 56% | 50% initial 529 | 56%
weights weights

Table 3: Final prediction accuracy results. Each cell contains trial results for, in sequence, (1) the evalu-
ation function applied in a perfect-information environment, and (2) the evaluation function applied in an
imperfect-information environment.

Turning Point Results

In Table 4 the obtained turning points are listed. We observe that when evaluating by use of the initial
weights, the weak turning point is on average 54% in a perfect-information environment, and 51% in an
imperfect-information environment. Results of the normal and strong turning points are more divergent.
The normal turning points are on average 67% and 81% in a perfect-information and imperfect-information
environment, respectively. The strong turning points are on average 78% and 96% in a perfect-information
and imperfect-information environment, respectively. This indicates that, as expected, the evaluation func-
tion in a perfect-information environment manages to predict the outcome of a game considerably earlier
than the evaluation function in an imperfect-information environment.

When evaluating in a perfect-information environment by use of the learned weights, we observe that for
the AAI-AAIL, AAI-TSI and AAI-RAI trials, the turning points improve significantly or remain comparable

WEAK TURNING ~ NORMAL STRONG

AALAAI POINT TURNING POINT TURNING POINT

\lfe‘ﬁfi 39% | 18% 50% | 59% 64% | 64%

\:1321&5 32% | 50% 48% | 59% 64% | 73%
AALTSI

\lfc‘ﬁfi 67% | 57% 74% | 87% 87% | 98%

\:g;ﬁig 97% | 100% 100% | 100% 100% | 100%
AATL-CSAIT

‘lfe‘z}fi 85% | 1% 88% | 1% 92% | 86%

“12211; 20% | 77% 26% | 83% 33% | 94%
AALRAI

\lfe‘ﬁfi 1% | 48% 2% | 85% 89% | 94%

“‘g;ﬁ% 99% | 95% 100% | 100% 100% | 100%

Table 4: Turning points. Each cell contains trial results for, in sequence, (1) the evaluation function applied
in a perfect-information environment, and (2) the evaluation function applied in an imperfect-information
environment.
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Figure 3: Comparison of outcomes correctly predicted as a function over time. The black line represents the
prediction performance of the evaluation function in a perfect-information environment, the gray line that of
the evaluation function in an imperfect-information environment.

to results obtained with initial weights. As an exception, turning points obtained in the AAI-CSAI trial show
deteriorated results. The explanation for this phenomenon is rather straightforward: because games of AAI
in competition against CSAI last for a very short time, relatively little training data of this particular trial
is available for the process of optimising term weights. Due to this bias in the training set, optimised term
weights will not be fit for use in the AAI-CSAI trial. From results obtained in the other three trials, we
may conclude that the established evaluation function is capable of accurately evaluating the game’s status
relatively early in the game.

Figure 3 displays the percentage of outcomes correctly predicted as a function over time. The figure
compares the predictions of the evaluation function in a perfect-information environment, with the predic-
tions of the evaluation function in an imperfect-information environment. Trial results reveal that when more
environment information becomes available in an imperfect-information environment, the established eval-
uation function obtains a prediction performance comparable to that in a perfect-information environment.

6 Discussion

In the AAI-AALI trial we observe a relatively non-gradual prediction performance in the first phase of the
game. A straightforward explanation of this phenomenon is that it results from optimising the term weights
for each phase of the game. As for each phase of the game the optimisation process is focused on obtaining
the highest overall prediction accuracy in that particular phase, an optimised, yet non-gradual prediction
performance can be the result. Our recommendation for game developers who incorporate automatically
generated score functions into their game environment, is to consider that in early phases of the game,
outcome predictions will always be inaccurate. To obtain reliable predictions, optimisation of term weights
should therefore be applied only to later phases of the game.

7 Conclusions and Future Work

In this paper we discussed an approach to automatically generate an evaluation function for game Al in RTS
games. Two terms were defined to evaluate a game’s status, namely a term based on material-strength, and
a term based on positional safety. A mechanism was incorporated to evaluate the game status dependent
on the phase of the game. Our experimental results show that just before the game’s end, the established
evaluation function is able to predict correctly the outcome of the game with an accuracy that approaches



100%. Additionally, the evaluation function predicts accurately before half of the game is played. From
these results, we may conclude that the established evaluation function effectively predicts the outcome of a
SPRING game.

For future work, we will incorporate our findings on evaluating a game’s status into the design of an
adaptation mechanism for RTS games. Our approach to automatically generate an evaluation function will
be applied to other RTS games, and games in other genres.
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