
meIRL-BC: Predicting Player Positions in Video Games

Inge Becht
University of Amsterdam

Intelligent Systems Laboratory Amsterdam
The Netherlands

inge.becht91@gmail.com

Sander Bakkes
University of Amsterdam

Intelligent Systems Laboratory Amsterdam
The Netherlands

s.c.j.bakkes@uva.nl

ABSTRACT
In this paper we demonstrate how behaviour-classification
models can improve player position prediction for video
game AI. To this end, we propose a novel method named
meIRL-BC, which (1) uses maximum-entropy Inverse Rein-
forcement Learning for the creation of position prediction
models [15], and (2) predicts player positions based on es-
timates of their most likely behavioural roles in the game
(e.g., attacking, defending, ambushing, etc.). Experiments
that test meIRL-BC in an actual Capture the Flag video
game yielded the following three results. First, depending on
the behavioural role to be classified, the prediction accuracy
of meIRL-BC approximates, slightly improves, or substan-
tially improves upon that of meIRL. Second, the accuracy
of the trained behavioural classifier is presently insufficient
for classifying actual game-player behaviour. Third, surpris-
ingly, despite use of an ineffective classifier, both meIRL-
BC and meIRL yielded comparable overall performance in
actual gameplay. What is more, when in actual gameplay
the percentage of correctly classified instances was above
approximately 40%, meIRL-BC substantially outperformed
meIRL is terms of win/loss/draw ratio, the number of bots
that were successfully killed, and the absolute number of
flags that were captured. Also, of all AIs in competition with
the standard AISandbox AI, meIRL-BC was able to capture
opponent flags more rapidly, thereby generally achieving a
higher game score than meIRL. From these results, we can
draw the conclusion that when the meIRL-BC method is
correctly applied in video-game AI, it indeed outperforms
meIRL in actual gameplay.

Keywords
Predicting Player Positions, Tactical Video Games,
Maximum-entropy Inverse Reinforcement Learning

1. INTRODUCTION
A common challenge for game AI of modern video games,
is to accurately model an (opponent) player on the basis of

imperfect information. That is, traditionally game AI were
equipped with full information on the game environment –
and the whereabouts of the (opponent) game players – in
order to increase its challenge level without much effort [4].
This practice was shown to generally not offer an entertain-
ing experience to the player [14], as the challenge level of
the AI was not based on skillful tactics, but rather on cheat-
ing tactics; by having complete knowledge of e.g., the game
map and all player positions, an unfair advantage is created
towards the human player. As a result, academic game AI
is increasingly focussing on non-cheating game AI that is
equipped solely with realistically available, albeit imperfect
information.

For many game genres, predicting player positions is an im-
portant capability of the game AI; one which heavily im-
pacts the AI’s effectiveness. However, accurate position pre-
diction in a realistic setting, based solely on the aggregated
observations of individual game-playing agents, remains an
open issue [1]. Although some approaches have investigated
the automatic generation of position prediction models for
video games [11, 4], generally no discrimination is made be-
tween distinct behaviours that occur in a game. Indeed, be-
haviour and position can be considered closely correlated
in many video games. For instance, in a capture the flag
game mode, players that are consistently located nearby
their team’s flag likely have adopted a defensive role, while
players that are consistently located nearby the enemy’s flag
likely have adopted an offensive role. One may therefore ar-
gue that when such distinct behaviours are not taken into
account when modelling player behaviour, the resulting ac-
curacy of position predictions will be limited [4].

As such, the contribution of this paper is enhancing an
established method for position prediction in video games
(i.e., maximum entropy Inverse Reinforcement Learning, or:
meIRL) [11] with a capability for Behavioural Classification
(meIRL-BC). The enhancement is achieved by creating a
position-prediction model for each distinct behavioural role
that bots may exhibit in a video game. We will validate the
enhanced method in an actual capture the flag (CTF) game
environment, namely AISandbox.

2. RELATED WORK
Position prediction of video-game players
Research into position prediction of video-game players is
still in its relative infancy. At present, some contributors to

the field are Hladky and Bulitko [4], Weber et al. [14], and
Laird [6].

Hladky and Bulitko [4] compared two different prediction
methods with regard to (1) the accuracy of predictions, and
(2) the human-likeness of predictions. The two compared
methods are hidden semi-Markov models and particle filters.
Experiments in a CTF game revealed that the hidden semi-
Markov models were the most accurate and made the most
human-like predictions (i.e., the errors were most human-
like). The research however focuses strictly on comparative
measurements, and does not investigate implementing the
methods in actual game-playing bots.

Weber et al. [14] employed particle filters too, but rather
than investigating the human-likeness of position predic-
tions, their work investigated whether employing such a
filter can enhance the effectiveness of game AI. Experi-
ments in which a learned particle model is employed by a
Star Craft game-playing AI showed a 10 per cent improve-
ment in game-playing performance. However, they make
simplifying assumptions for their particle filters, i.e., incor-
porating constant trajectory and linear decay functions for
particles, that may not hold in general. A possible improve-
ment in this regard, would be to utilise movement models
that incorporate qualitative spatial reasoning [3].

Finally, Laird [6] investigated how reasoning over player ob-
servations can allow a bot to anticipate a player’s actions.
Specifically, Laird implemented a number of anticipation
strategies into a Quake bot, to be executed only at an esti-
mated high probability of accurately anticipating the player
behaviour. That is, when an anticipating strategy is trig-
gered, the bots attempt to predict the behaviour of the ob-
served player, by reasoning how itself would have behaved
in the observed player’s situation. Though it is stated that
these additions of anticipating strategies are beneficial for
the performance of the AI, no experimental results are given
that support this claim. Still, in terms of enhancing predic-
tion performance, the intuition of building upon anticipatory
models may still be regarded an important contribution.

IRL in video games
The above mentioned position predictors employ a direct
approach to modelling the opponent’s behaviour. In con-
trast, the inverse reinforcement learning (IRL) [9] approach
attempts not to learn a model of the opponent’s behaviours,
but assumes that the opponent is making rational deci-
sions on the basis of an underlying Markov decision process
(MDP) [10], and tries to learn this MDP from demonstra-
tions of the opponent’s behaviour. The opponent’s policy is
then found with MDP planning methods.

In Tastan et al. [11], predictive models were established us-
ing meIRL. Here, inverse reinforcement learning is used to
learn a value map of the environment and to generate a max-
imum entropy distribution over the opponent’s likely paths.
In the work, meIRL – of which the theoretical foundation is
discussed in Section 3 – is applied for the goal of intercepting
opponents in the video game Quake. The work builds upon
a particle filter that integrates meIRL position prediction
models (cf. Ziebart et al. [15]), and is compared with base-
line Brownian prediction models that randomly spread par-

ticles over the map. The predictive models that use meIRL
had a significantly smaller tracking error in predicting the
position of opponent players. Also, when employed in actual
game AI, the meIRL method was more likely to successfully
intercept the opponents bots.

Lee and Popovic [7] utilise IRL for transfer learning of dis-
tinct player behaviour. Their approach attempts to learn the
optimal policy belonging to observed player behaviour, as-
suming the Markov model state-space is deterministic and
discrete. A similar approach is taken by Tastan and Suk-
thankar [12], who utilise IRL for learning when game bots
should attack, explore and target opponents in a human-
like manner. This is implemented by deriving policies from
human-expert playing demonstrations. Experimental results
with this approach were promising, as the bots were shown
to act more human-like (according to a jury of human par-
ticipants). A remaining obstacle of the suggested approach,
however, is that multiple policies can be learned from a sin-
gle demonstration by using IRL, making the selection of an
appropriate policy not a straightforward choice.

Our own research is closely related to more recent work
of Tastan et al. [11], which learns position-prediction mod-
els effectively by applying meIRL. We believe that this ap-
proach can be further enhanced by learning unique predic-
tion models per distinguished behaviour in the game (as op-
posed to learning a single model over all observed players in
the game). Our intuition is that our approach provides en-
hanced expressive power on the whereabouts of individual
game players. A formalisation of the approach is discussed
next.

3. THEORETICAL FOUNDATION
To provide context for the reader, we provide a short in-
troduction on (1) inverse reinforcement learning (IRL), and
(2) how it can be constrained to find the maximum entropy
solution (meIRL). For a more detailed discussion on these
topics, and its relationship to reinforcement learning, we re-
fer the reader to Ziebart et al. [15].

To utilise IRL for generating prediction models, training tra-
jectories are required that are an adequate representation of
the model that needs to be learned, expressed in movement
actions a and state positions s. When learning the model
from the training trajectories, a value map is created that
for each position contains the probability that it will be vis-
ited by the expert agent. The creation of the model by IRL
can be written as the following Bellman equation [11].

V (s) = max
as

{R(s, as) +
∑
s′

P (s′|s, as)V (s′)} (1)

Here, V (s) is the value of each state when applying a rational
(optimal) policy, and P (s′|s, as) is the probability of ending
up in state s′ when applying action a in state s. Video-game
environments can be abstracted to be deterministic in na-
ture, and thus only have value 1 or 0 for the summation over
s′ in case a ∈ A(s), where A(s) is the set of actions that can
be taken at state s. R(s, as) is the reward function, which is
unknown in case of IRL. The reward function is the product
of a weight vector and a vector of features in which each
state is expressed, to create a position invariant expression
of positions on the map, of which the relative importance is

learned by adjusting the weights accordingly. The weights
converge by applying the forward-backward pass algorithm,
as described in [15, 11].

Because in practice IRL is an under-constrained problem,
there are multiple possible optimal rewards that fit the
demonstrated expert behaviour [12]. For tasks like ours this
typicality is undesired. Maximum entropy IRL (meIRL) ad-
dresses this by computing the maximum entropy solution to
the IRL problem, using the following equation:

V (s) =
∑
as

P (as|s){R(s, as) +
∑
s′

P (s′|s, as)V (s′)} (2)

The maximum entropy solution assumes that the natural
distribution of trajectories is the distribution that maximizes
the entropy, i.e., the diversity is maximized. This is a desir-
able property in our problem domain, because behaviour
observed in typical modern video game environments is in-
herently non-deterministic.

4. APPROACH
Here, we discuss meIRL-BC; our approach to predicting
player positions in video games. Its contribution is enhancing
an established method for position prediction in video games
(i.e., maximum entropy Inverse Reinforcement Learning, or:
meIRL) [11] with a capability for Behavioural Classification
(meIRL-BC). The enhancement is achieved by creating a
position prediction model for each distinct behavioural role
that bots may exhibit in a video game.

Figure 1 schematically illustrates our approach. The figure
depicts two offline components that are activated before the
start of a game: (A) the position prediction modeller (4.3)
that creates a position prediction model for each behaviour
(4.2), and (B) the construction of the behaviour classifier
(4.4). The classifier is applied each game loop for each op-
ponent in case it is witnessed by one of the meIRL-BC bots.
In case the opponent is not witnessed, a final component is
activated; the position propagator (4.5).

4.1 Game environment
Though our approach to predictive modelling is not lim-
ited to a specific video game, its implementation is domain
specific; the different behaviours that need to be classified
and the features used for creating the motion model will
vary for each video game. In this paper the typical Cap-
ture The Flag (CTF) game mode is used for implementing
meIRL-BC. CTF is a tactical game mode typically found
in first-person shooter games, in which two teams attempt
to capture each others flag, while attempting to prevent the
other team from succeeding by firing at the opponent team.
When delivering a captured flag to a certain position on the
map, a point is scored. The team with the most points after
a certain amount of time wins the game.

Our experiments will take place in AISandbox [2], a CTF
game environment and prototyping toolkit that is specifi-
cally designed for creating new multi-agent AI systems. Our
approach will be implemented in Terminator [13], an ex-
isting game AI that has been specifically designed for CTF
games. This game AI has already successfully competed in
the 2013 Capture the Flag AI competition.

Learn position pre-
diction models using

meIRL (Equation 2) (4.3)

Example
trajectories
expressed
in features

Construct RF
Classifier (4.4)

Training Set

Start Game

Next
game

loop It-
eration?

Terminate

Next Opponent

Is enemy
seen?

Propagate position
using active pre-

diction Model (4.5)

Classify behaviour,
activate right pre-
diction Model (4.4)

More
enemies?

no

yes

yes

no

no

yes

Figure 1: A schematic representation of all components of
meIRL-BC. The ellipses indicate input data, the rectangles
indicate actions, and the diamonds indicate if-statements.
The dark blue elements are specifically constructed for
meIRL-BC – the numbers indicate the subsection in which
they are discussed.

4.2 Behaviours
Naturally, for creating a motion model for each distinct be-
haviour that can be observed in a game (i.e., behavioural
roles that players may take upon themselves), one first needs
to decide on which behaviours need to be modelled. We have
chosen to model behaviours that are generic to a CTF game
mode, thereby acknowledging that behaviours that our own
bots exhibit, are also likely to be exhibited by the opponent
bots (cf. [6])1. As a result, we have decided to model the
following six bot behaviours.

Attack flag. Moving to an opponent’s flag to capture it
from its spawning location. This generally is a single
trajectory from the bot spawn location to the spawn
location of the opponent’s flag.

Defend flag. Moving to ones own flag for defending pur-
poses, killing enemies that come nearby. This be-
haviour is generally centred around a few defensible
locations in the map.

Carry flag. When the opponent flag is captured, a bot car-
ries it to its score position. Players exhibiting this be-
haviour generally attempt to rapidly traverse a safe
path to the score position.

Assist flag carrier. Here a player assists the flag carrier
with safely traversing to the score position. Generally
a path similar to that of the flag carrier is taken.

Ambush. Players may place ambushes that generally are
positioned on places that contain points of interest,
e.g., defensible points nearby the flag score location.

1
An alternative albeit less generally applicable approach would be

to model a team’s overarching play style in a game. This has been
investigated previously by Matsumoto and Thawonmas [8].

Stalk. In this behaviour, when a player knows the position
of an opponent while this opponent is not aware of
the player, the player stalks the opponent until it is in
shooting range.

4.3 Position prediction models
For creating position prediction models, meIRL (Equation 2)
requires training trajectories in which the behaviours de-
scribed above are exhibited in actual gameplay (as illus-
trated in Figure 1). In our approach, these training trajecto-
ries are derived from observing the Terminator bot operat-
ing in a self-play CTF match; by logging every bot position
for each iteration of the game loop, and hand-labelling the
behaviour that was exhibited. Subsequently, the observed
player positions are discretized into a grid, so that the num-
ber of possible states is finite, as is required by the meIRL
method. In our implementation, the grid is equal in size as
the employed game map (i.e., 88× 50 tiles).

The features that are used for training the reward function
in meIRL, are based on previous research by Tastan et al.
[11]. In this work, the distance to specific points on the map
– that are deemed important for that specific game environ-
ment – are used as features. We adopt the same approach,
but tailored the features to the CTF game. The resulting
seven features are: (1) shortest distance to opponent bot
spawn, (2 shortest distance to friendly bot spawn, (3) short-
est distance to opponent score position, (4) shortest distance
to friendly score position, (5) shortest distance to friendly
flag spawn location, (6) shortest distance to opponent flag
spawn location, (7) visibility of game environment, as ex-
pressed by how many grids of the game world are visible to
the game AI.

While gathering training trajectories (according to the pro-
cedure described above), features values for all seven fea-
tures are logged. Together with the raw positional observa-
tions and collected labels, this provides input for creating
the actual position prediction models via Equation 2. In our
approach, adequate weights for the features are determined
by the forward-backward pass algorithm over 500 iterations
(cf. Tastan et al. [11]).

To ensure convergence in our relatively large state-space,
without decreasing effective resolution, we train multiple
position prediction models for a single behaviour by using
chunks of the complete trajectories, and subsequently com-
bine the chunks by taking the means over the combined mod-
els. Specifically, the trajectories were divided into smaller
chunks until convergence of the meIRL algorithm took place,
making the chunk sizes range anywhere between five and
ten subsequent positions. Subsequently, the prediction mod-
els that were generated using these smaller trajectories were
combined into the final prediction model by calculating the
mean of each position on the grid, by summating all proba-
bilities of a single position, and dividing the summation by
the number of chunks that were employed. Figure 2 illus-
trates two position prediction models that were learned by
the meIRL method for the AISandbox CTF game.

4.4 Behaviour classification
Recall that in this research we posit that distinguishing be-
tween distinct behaviours in a game can enhance the accu-

(a) Prediction model for the be-
haviour Carry flag

(b) Prediction model for the be-
haviour Defend flag

Figure 2: Two learned position prediction models. Training
trajectories are indicated in red, the map obstacles in blue,
and probable player positions for the trajectories in white
shades (improbable positions in dark shades).

Algorithm 1. Position Prediction - Main algorithm

1 for Every iteration of the game loop do
2 for All enemy agents do
3 if Agent is seen then
4 Classify behaviour;
5 Activate relevant position prediction model for this agent

6 else
7 if Agent is alive then
8 Execute PropagateStep() using the active position

prediction motion model
9 else

10 Clear propagation steps
11 end

12 end

13 end
14 Use prediction data

15 end

racy of position predictions. To use behaviour-based predic-
tion models, instead of straightforwardly applying a single
model throughout a game, a decision needs to be made on
which learned behavioural model best describes observed op-
ponent behaviour (i.e., behavioural classification). In our im-
plementation of meIRL-BC, this classification is made each
time an opponent is witnessed by the game AI that uses
meIRL-BC. The procedure is detailed in Algorithm 1; it in-
corporates a position propagation subroutine (Algorithm 2)
as discussed in Subsection 4.5.

To learn such a behavioural classifier, as with the previous
components, requires a set of training instances. Given that
the task of behavioural classification is distinct from position
prediction, the set of adequate features is different too. Fol-
lowing from our domain knowledge of the game environment,
we have decided on the following five features: (1) the agent’s
position expressed in point-of-interest distances (analogous
to those utilised in the positions prediction models), (2) the
orientation of the agent, (3) the game state - being either:
both flags are at their spawn point, both flags not at spawn
point, friendly flag not at spawn point, opponent flag not at
spawn point, (4) the distance to the closest opponent, (5) is
the bot presently observing an opponent bot (boolean), and
(6) environment visibility. As such, we collect feature data
by observing a self-play match in which the Terminator AI
is exhibiting all six behaviours described in Subsection 4.2;
thereby generating feature data from over 6000 instances.

The adopted classification method in our approach is ran-

Algorithm 2. Position Prediction - PropagateStep routine

Data: T ← Set of tuples, containing trajectories (t) and their probabilities;
O ← Preferred Directions by agents;
s ← Propagation Step;
MM ← Active motion model: probability map;
Result: Tnew ← new Trajectories

1 for (t, probability) in T do
2 position ← getLastPosition(trajectory);
3 possiblePositions ← possiblePositions(position);
4 total ← 0 ;
5 for possiblePos in possiblePositions do
6 total ← total + MM[possiblePos]
7 end
8 for possiblePos in possiblePositions do
9 p ← calcProb(position, total, MM);

10 if p ∈ O then

11 probabilitynew ← probability × (p + (1
s
∗ p))

12 else
13 probabiltynew ← probabilty × p
14 end
15 tnew ← Add possiblePos to t;
16 Add (tnew, probabilitynew) to Tnew ;
17 Sort Tnew on highest probability;

18 end

19 end
20 Discard Tnew [i] if i > trajectoryMaximum

dom forest decision-tree classification [5]. The classifier oper-
ates by creating multiple decision trees which all cast a vote
when an instance requires a classification. The advantage of
this method, is that it does not solely output a classification,
but returns a probability distribution of the classification.

4.5 Position propagation
Finally, a method is required that propagates position pre-
dictions of unobserved game players to future game itera-
tions. Analogous to previous work into particle filters [14,
11, 4], in our discrete-spaced game environment we proba-
bilistically propagate candidate positions in the available di-
rections of player movement. The precise algorithm adopted
for position propagation is given in Algorithm 2; it incor-
porates a subroutine for determining position probabilities
(Algorithm 3). Note that the algorithm propagates positions
of a single game player.

Each time an opponent game player is not observed, the
n most likely trajectories are propagated a single step, by
looking at the last candidate position (Algorithm 2, Line 2),
in the four possible movement directions (i.e., up, down,
left, right), or fewer in case of obstructions (Line 3). In our
implementation, we propagate a maximum of twenty likely
trajectories. At the first propagation step the content of the
set of trajectories, will be a single tuple with the position of
the opponent where it was last spotted, with a probability
of one. When a propagation step is applied to this single
position, at most four new trajectories are made. For these
new trajectories, the new probability is the product of the
previous probability and the probability for entering this
new state (Line 13).

The motion model gives for each position the absolute prob-
ability that it is will be visited. Directly utilising these abso-
lute prediction values is undesirable for predicting the tra-
jectories, as we are interested in the probability of any of
these new positions being chosen by the opponent player,
relative to its currently estimated position. To this end, we
divide each probability of the possible positions by the sum-
mation of the probabilities of all subsequent states (Line 6).
Note that in the algorithm a small bias is introduced for grid
tiles that an opponent player was facing when observed, as
this is a likely movement direction for that player (Line 11).

Algorithm 3. Position Prediction - CalcProb routine
Data: position ← Position for which to find probability;
total ← Total probability of surrounding tiles;
MM ← Active motion model
Result: prob ← Tile traverse probability

1 prob ← MM[position]
total

;

Algorithm 4. Terminator trajectory labelling
Data: nrV isited ← Matrix consisting of every tile on board

1 for every iteration of the game loop do
2 for all enemy agents do
3 if agent is alive and just seen then
4 (x, y) ← position of enemy;
5 (prevx, prevy) ← position of enemy at previous sighting;
6 path ← shortestPath(x,y, prevx, prevy);
7 for (xpos, ypos) in path do
8 nrV isited[xpos][ypos] + +
9 end

10 else
11 continue;
12 end

13 end
14 Use new iterated values for determining the best course of actions.

15 end

5. EXPERIMENTS
Experimental setup
In our experiments, we enhance the Terminator AI with
our meIRL-BC method. This enhancement is set-up as fol-
lows. The Terminator AI utilises a straightforward his-
togram approach to position prediction (Algorithm 4), in
which when an opponent player is observed at a certain grid
position, it increases the probability of observing the op-
ponent on this position as well as all tiles on the shortest
path from this position to that of the previous sighting of
this particular opponent. These histograms are subsequently
utilised for calculating safe routes and suitable ambush posi-
tions. Naturally, however, when opponents are not observed
for several iterations, the histogram approach yields highly
inaccurate position predictions, as the shortest routes be-
tween observations are less and less likely to reflect actual
player trajectories.

Our enhancement is straightforward in that instead of
heuristically determining likely trajectories, the learned po-
sition prediction models and position propagation method
are now utilised (cf. Section 4), thereby extending the orig-
inal histogram approach. The enhancement is described in
Algorithm 5. Here the path (Line 4) that is used to update
the histogram in each iteration now is determined by the
most probable trajectory at that moment, as calculated by
the propagateStep routine described in Algorithm 2. The
update of the trajectories and their probabilities (Line 11)
is as described in Algorithm 1.

Performance evaluation
As meIRL-BC consists of several components, to validate its
performance we perform the following three evaluations: (1)
the accuracy of the position predictions, (2) the accuracy of
the behavioural classifier, and finally (3) the effectiveness of
meIRL-BC in actual gameplay.

All experiments take place in the form of actual gameplay
matches. For all Terminator AI’s (i.e., the original Termi-
nator, Terminator enhanced with meIRL – which only uses
a single prediction model for all opponents, and Termina-
tor enhanced with meIRL-BC) we perform a competition.
In each competition the AI is pitted against the standard

Algorithm 5. Terminator meIRL-BC trajectory labelling
Data: nrV isited ← Matrix consisting of every tile on board

1 for every iteration of the game loop do
2 for all enemy agents do
3 if agent is alive then
4 path ← most likely trajectory for the agent;
5 (posx, posy) ← last position of path;
6 nrV isited[xpos][ypos] + +;

7 else
8 continue;
9 end

10 end
11 Update trajectories and probabilities;
12 Use new iterated values for determining the best course of actions;

13 end

AISandbox AI (10 matches), and the two other Terminator
AI’s (2×40 matches). Matches against the standard AISand-
box AI are included to assess how well meIRL-BC performs
when pitted against an AI that does not exhibit the ex-
act same behaviours as observed in the training phase. For
performance evaluation, in each iteration of a game match,
observations are gathered on the position and behaviour of
each player, and the predicted class and position of the oppo-
nent players. All matches take place under counter-balanced
starting conditions on the same map on which the prediction
models were learned.

Results
Position prediction accuracy
Figure 3 illustrates the accuracy of position predictions,
as expressed in the obtained prediction error (i.e., the Eu-
clidean distance between the predicted position and the ac-
tual position); a lower prediction error is better. Figure 3a
illustrates the prediction error of Terminator enhanced with
the original meIRL. Figure 3b-f illustrate the prediction er-
ror of Terminator enhanced with meIRL-BC for specific clas-
sified behaviours. Note that in the case when meIRL-BC
position prediction models were employed, the learned tra-
jectories were only utilised when the player behaviour was
classified, so that the resulting prediction error is solely de-
pendent on the performance of the model, and not on the
behavioural classification.

The obtained results reveal that over twenty propagation
steps, the mean prediction error for meIRL-BC: Attack flag
and meIRL-BC: Defend flag is substantially lower (better)
than that of meIRL. In addition, the results reveal that
over twenty propagation steps, the mean prediction error
for meIRL-BC: Ambush and meIRL-BC: Assist flag carrier
is slightly lower (better) than that of meIRL, and the pre-
diction error for meIRL-BC: Carry flag approximates that of
meIRL. Moreover, while the prediction error of meIRL does
not seem to converge, the prediction error of meIRL-BC: At-
tack flag and meIRL-BC: Defend flag appears to converge
at a relatively low prediction error (i.e., 10). Note that the
behaviour that is observed most often is a player defending
the flag, and that the least observed behaviour is a player
stalking another bot (observed only once – as such no mean
prediction error figure is plotted). To show statistical sig-
nificant of these results, we applied a sample-paired t-test
on the mean propagation error of meIRL in combination
with the mean propagation of each meIRL-BC behaviour.
Using a significance value of 5% we can reject the hypothe-
sis that the means for both data sets is the same in the case
of the behaviours meIRL-BC: Attack, meIRL-BC: Defend

and meIRL-BC: Deliver flag.

Classification accuracy
The accuracy of the learned random forest classifier, using
10-fold cross validation applied to the set of training in-
stances, amounted to 72%. However, in actual gameplay in
the 40 matches against Terminator enhanced with meIRL,
a classification accuracy of only 27.5% was obtained, indicat-
ing that the trained classifier was heavily over-fitted to the
set of training instances. The ineffectiveness of the learned
classifier is revealed as well in the confusion matrix (Table 1).
Each row of the matrix represents the actual behaviour that
was observed in the gameplay instance, while each column
of the matrix represents the behaviour which was predicted.

Effectiveness in actual gameplay
Surprisingly, given the inaccurate behavioural classifier that
is employed in meIRL-BC, both meIRL-BC and meIRL
are comparable in terms of actual gameplay performance.
This is revealed in Table 2, which gives the absolute perfor-
mance measured in the three performed competitions. Both
in terms of win/loss/draw ratio, as well in terms of the to-
tal flags captured/lost ratio, meIRL-BC and meIRL do not
substantially differ. Also note that the original Terminator
AI consistently outperforms both meIRL approaches – pre-
sumably due to lower-level AI of the Terminator AI not yet
effectively utilising the learned position-prediction models.

What is more, Figure 4 reveals that when in actual game-
play the percentage of correctly classified instances is above
approximately 40%, meIRL-BC substantially outperforms
meIRL is terms of win/loss/draw ratio (Figure 4a), the
number of bots that were successfully killed (Figure 4b),
and the absolute number of points that were scored (i.e.
flags that were captured) (Figure 4c). These results indicate
that when meIRL-BC is correctly applied, it indeed out-
performs meIRL in actual gameplay. Finally, Figure 5 illus-
trated the average point score plotted against the score time
for the three Terminator AIs in competition with the stan-
dard AISandbox AI. It reveals that meIRL-BC captures flags
more rapidly than meIRL. Thereby, it generally achieves a
higher game score than meIRL.

6. DISCUSSION
In experiments that test meIRL-BC we observed that, de-
pendent on the behavioural role that was to be classified,
meIRL-BC approximated the prediction accuracy of meIRL
(1x), achieved a slightly improved prediction accuracy (2x),
or achieved a substantially improved prediction accuracy
(2x). However, in some cases, outliers were observed with
a relatively high prediction error. We believe that such out-
liers cannot be avoided due to the inherent randomness that
is typical to video games. For instance, in the investigated
CTF game, (un)lucky circumstances may suddenly alter the
trajectory of a player (e.g., it suddenly is being chased by
an opponent player). Naturally, the prediction models may
be further refined by incorporating features that can reduce
the number of prediction outliers.

The aspect of generalisation was briefly investigated by pit-
ting meIRL-BC against a game AI whose behaviour it had
never observed in the training phase (the standard AISand-
box AI). The obtained results given in Table 2 revealed that

(a) meIRL (b) meIRL-BC: Attack flag (c) meIRL-BC: Defend flag

(d) meIRL-BC: Ambush (e) meIRL-BC: Carry flag (f) meIRL-BC: Assist flag carrier

Figure 3: Prediction error of meIRL and the meIRL-BC enhancement (a lower prediction error is better).

Table 1: Confusion matrix for all classifications performed in forty games of meIRL-BC versus meIRL.

Attack flag Defend flag Ambush Assist flag carrier Carry flag Stalk

Attack flag 1781 689 1776 888 508 22
Defend flag 8617 7528 6208 6750 4001 120

Ambush 1905 216 2069 576 231 8
Carry flag 495 329 568 378 1507 40

Assist flag carrier 302 432 276 472 386 3
Stalk 112 102 72 56 51 1

meIRL-BC consistently outperformed the standard AISand-
box AI. While this comparison is skewed with respect to the
AI’s being distinct in terms of lower-level AI, the obtained
results give rise to the idea that the modelled behaviours (at-
tacking, defending, carrying flag, etc.) are general enough to
adequately model behaviour of different, previously unob-
served opponent AIs.

7. CONCLUSION AND FUTURE WORK
In this paper we demonstrated how behaviour-classification
models can improve player position prediction for video
game AI. To this end, we proposed a novel method named
meIRL-BC, which (1) uses maximum-entropy Inverse Rein-
forcement Learning for the creation of position prediction
models [15], and (2) predicts player positions based on es-
timates of their most likely behavioural roles in the game
(e.g., attacking, defending, ambushing, etc.).

Experiments that test meIRL-BC in an actual Capture the
Flag video game yielded the following three results. First,
depending on the behavioural role to be classified, the pre-
diction accuracy of meIRL-BC approximates, slightly im-
proves, or substantially improves upon that of meIRL. Sec-
ond, the accuracy of the trained behavioural classifier is

presently insufficient for classifying actual game-player be-
haviour. Third, surprisingly, despite use of an ineffective
classifier, both meIRL-BC and meIRL yielded comparable
overall performance in actual gameplay. What is more, when
in actual gameplay the percentage of correctly classified in-
stances was above approximately 40%, meIRL-BC substan-
tially outperformed meIRL is terms of win/loss/draw ratio,
the number of bots that were successfully killed, and the ab-
solute number of flags that were captured. Also, of all AIs in
competition with the standard AISandbox AI, meIRL-BC
was able to capture opponent flags more rapidly, thereby
generally achieving a higher game score than meIRL.

From these results, we can draw the conclusion that when
the meIRL-BC method is correctly applied in video-game
AI, it indeed outperforms meIRL in actual gameplay. For
future work, we will investigate how to improve behavioural
classification by considering the sequential nature of player
behaviour (i.e., behaviour is generally consistent over several
time-steps).

Acknowledgement. We gratefully acknowledge Diederik
Roijers’ contribution to the paper’s theoretical foundation.

Table 2: Overall gameplay performance as measured in three competitions.

Terminator vs. ... Win Draw Loss Total matches Total flags captured Total flags lost

Standard AI 10 0 0 10 97 2
Terminator meIRL 26 7 7 40 185 113

Terminator meIRL-BC 27 10 3 40 153 95

Terminator meIRL vs. ... Win Draw Loss Total matches Total flags captured Total flags lost

Standard AI 9 1 0 10 46 3
Terminator 7 7 26 40 113 185

Terminator meIRL-BC 12 12 16 40 98 113

Terminator meIRL-BC vs. ... Win Draw Loss Total matches Total flags captured Total flags lost

Standard AI 10 0 0 10 58 1
Terminator 3 10 27 40 95 153

Terminator meIRL 16 12 12 40 113 98

(a) Wins/losses/draws of meIRL-BC (b) Bot kills by meIRL-BC (c) Point (flag) scores of meIRL-BC

Figure 4: Game wins, bot kills, and point scores of meIRL-BC as plotted against the classification error.

Figure 5: Average point score plotted against the score time
(in game ticks) for the three Terminator AIs. The data la-
bels indicate the number of matches in which the concerning
number of points were scored.

8. REFERENCES
[1] A. Champandard. Open challenges in first-person shooter

(FPS) AI technology, April 2011.
[2] A. Champandard, P. Champandard-Pail, P. Dunstan,

R. Kogelnig, K. Lord, and M. F. Brandstetter. The AI
Sandbox, 2013.

[3] K. D. Forbus, J. V. Mahoney, and K. Dill. How qualitative
spatial reasoning can improve strategy game ais. Intelligent
Systems, IEEE, 17(4):25–30, 2002.

[4] S. Hladky and V. Bulitko. An evaluation of models for
predicting opponent positions in first-person shooter video
games. In IEEE CIG 2008, pages 39–46, 2008.

[5] T. K. Ho. Random decision forests. In Proc. of the 3d Int.
Conf. on Document Analysis and Recognition, pages
278–282. IEEE, 1995.

[6] J. E. Laird and M. Van Lent. It knows what you’re going to
do: Adding anticipation to a quakebot. In Proc. of the 5th
Int. Conf. on Autonomous Agents, pages 385–392, 2001.

[7] S. J. Lee and Z. Popović. Learning behavior styles with
inverse reinforcement learning. ACM Transactions on
Graphics (TOG), 29(4):122, 2010.

[8] Y. Matsumoto and R. Thawonmas. MMOG player
classification using hidden markov models. In
Entertainment Computing - ICEC 2004, pages 429–434.
Springer, 2004.

[9] A. Y. Ng and S. Russell. Algorithms for inverse
reinforcement learning. In Proc. of the 7th Int. Conf. on
Machine Learning, pages 663–670, 2000.

[10] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[11] B. Tastan, Y. Chang, and G. Sukthankar. Learning to
intercept opponents in first person shooter games. In IEEE
CIG 2012, pages 100–107, 2012.

[12] B. Tastan and G. Sukthankar. Learning policies for first
person shooter games using inverse reinforcement learning.
Proc. of the AIIDE 2011, pages 85–90, 2011.

[13] L. Verhaard. Terminator bot, 2013.

[14] B. G. Weber, M. Mateas, and A. Jhala. A particle model
for state estimation in real-time strategy games. In Proc. of
the AIIDE 2011, page 103–108. AAAI Press, 2011.

[15] B. D. Ziebart, A. Maas, J. A. D. Bagnell, and A. Dey.
Maximum entropy inverse reinforcement learning. In Proc.
of AAAI 2008, July 2008.

