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A B S T R A C T

In this paper we introduce Facial Expression Analysis (FEA) both as a means of predicting in-game difficulty and
as a modeling mechanism, based on which we develop in-game difficulty adjustment algorithms for single player
arcade games. Our main contribution is the implementation of an online and unobtrusive game personalisation
system. On the basis of FEA, our system is able to adapt the difficulty level of the game to the individual player,
without interruptions, during actual gameplay.

Specifically, we study (a) how perceived in-game difficulty can be measured through facial expression analysis,
and (b) how facial expression data can model player behavior and predict their affective state.

Experimental findings reveal that different in-game difficulty settings can be correlated to distinct player
emotions (revealed in facial expressions). Furthermore, a model based on facial expression analysis is success-
fully applied to calculate an appropriate difficulty setting, tailored to the individual player. From these results,
we may conclude that efficient game personalisation is achievable through FEA.

1. Introduction

In this paper, we study the correlation between players’ emotional
state (as observed through FEA) and in-game difficulty setting, in an
attempt to validate FEA as an approach towards game personalisation.
Furthermore, we research how FEA can be leveraged to provide an
efficient mechanism for online and unobtrusive personalised games,
where the game experience is continuously tailored to fit the individual
player. Through FEA, we aim to extract a reliable and objective de-
scription of players’ affective state, which will be applied in order to
create personalised game spaces (levels).

The goal of this research is to generate personalised game levels
based explicitly on FEA data, extracted during actual gameplay. We
consider this to be a challenging task, given the diversity among players
in terms of emotional expressiveness, gender, age, and in-game cap-
abilities. An efficient game personalisation mechanism based on FEA is
not only a novelty in the field of gaming AI, but may also set the
foundations for further research on game personalisation through
computer vision. Given the commercial popularity of webcams, FEA
provides an accessible and unobtrusive input channel to apply player
affect modeling methods and subsequently, Dynamic Difficulty
Adjustment (DDA). We believe that this study could provide the basis

for a generalisable player affect model, implemented across multiple
games.

In order to examine whether personalised games can be im-
plemented through FEA, we have divided our work into two parts:

The first part investigates the correlation between in-game difficulty
and player emotional state, as described by the players’ facial expres-
sions. Through machine learning techniques, it aims to show that
players’ facial expressions are indicative of perceived in-game diffi-
culty. Specifically, through a classification task, we are able to predict
the difficulty level of the game currently played with high accuracy, by
analysing players’ facial features.

The second part, expands on the first part’s findings, and introduces
FEA as a technique towards measuring player engagement and dyna-
mically adjusting in-game difficulty. Since it was shown that player
facial expressions are an indicator of current game difficulty in the first
part, we propose a FEA-based game personalisation system which aims
at improving individual player in-game experience, while at the same
time maximising player affection levels towards the game itself.

2. Related work

In this section, we present relevant research in the fields of Game
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Personalisation, Dynamic Difficulty Adjustment (DDA), and Affective
Feedback. Our research is based on findings in these fields, each of
which contributes towards implementing our game adaptation me-
chanism.

2.1. Game personalisation

Game personalisation is motivated by a significantly increased in-
volvement and extensive cognitive elaboration when players are ex-
posed to content of personal relevance [26]; it has been shown that they
will exhibit stronger emotional reactions [9]. A positive effect on player
satisfaction has been found, i.e., game personalisation raises player
loyalty and enjoyment, which in turn can steer the gaming experience
towards a (commercial) success [40]. The perspective of AI researchers
to increase the engagement and enjoyment of players is one that is
consistent with the perspective of game designers [28], i.e., personali-
sation methods are regarded as instrumental for achieving industry
ambitions [21]. Tailoring the game experience to the individual player
particularly benefits from the use of player models, and requires com-
ponents that use these models to adapt parts of the game [4].

Our research follows the emerging trend of employing AI methods
for adapting the game environment itself (as opposed to, more typi-
cally, adapting the behaviour of the game characters) [4]. In our in-
vestigation, we choose to focus on personalising the game space to the
individual player with respect to experienced challenge. We define the
“game space” as the representation of the game mechanisms through
which the user interacts with the game.

2.2. Dynamic Difficulty Adjustment (DDA)

DDA is a technique for continuously adapting a game so that it
maintains a certain level of difficulty [43,38,36]. In most cases, it aims
at adapting the difficulty setting of a game to fit the skills and/or game
experience of the individual player. DDA can be implemented using
various approaches, from ‘simple’ heuristics to ‘complicated’ machine
learning methods.

Various applications of DDA in games are found in literature.
Hunicke and Chapman [14] introduce a probabilistic method for re-
presenting and reasoning about uncertainty in games. Their main goal
is to keep the player engaged for the appropriate amount of time (also
referred as keeping players in the “flow area”, as described in Csiks-
zentmihalyi’s theory of Flow [8]). Zook and Riedl [46] follow a tem-
poral data-driven approach, focused on modeling and predicting player
performance instead of in-game difficulty. This approach is based on
the assumption that in-game difficulty is a subjective measurement. Xue
et al. [43] use a probabilistic graph to model player progression. In-
game difficulty is dynamically adjusted in order to maximise a player’s
stay time in the progression graph. Jennings-Teats et al. [16] introduce
a statistical approach, where a multilayer perceptron algorithm was
built in order to rank generated level segments as a model of difficulty.

A term closely related to DDA is Challenge Balancing. Challenge
balancing concerns automatically adapting the challenge that a game
poses to the skills of a player [22,37]. It aims at achieving a ‘balanced
game’, i.e., a game wherein the player is neither challenged too little,
nor challenged too much. In most games, the only implementation of
challenge balancing is provided by a difficulty setting, i.e., a discrete
parameter that determines how challenging the game will be. However,
as the challenge provided by a game is typically multi-faceted, it is hard
for the player to estimate reliably the challenge level that is appro-
priate. Furthermore, generally only a limited set of discrete difficulty
settings is available (e.g., easy, normal, hard). This entails that the
available settings are not fine-tuned to be appropriate for each player.
As such, researchers have developed advanced techniques for balancing
the challenge level of games. Hunicke and Chapman [14] explored
challenge balancing by controlling the strength of opponent characters
(i.e., controlling the opponent character’s health, accuracy, and

employed weapons). Spronck et al. [37] investigated methods for au-
tomatically adjusting weights assigned to possible game scripts.
Knowledge on the specific effect of game adaptations can be employed
for maintaining a challenge level [3], and may be incorporated to steer
the procedural generation of game content [42].

In our research, we take the distinct focus of balancing the game’s
challenge level by dynamically adapting the difficulty of the content
that is placed within the game environment. We also focus on proce-
dural content generation for tailoring the player experience. Our dis-
tinct focus in this matter, is to assess online and unobtrusively which
game adaptations are required for optimising the individual player’s
experience while the game is being played, to have assessments on how
the experienced player challenge impacts the procedural process (cf.
Bakkes et al. [2]).

2.3. Affective feedback

Following the principles of affective computing as described by
Picard et al. [27], researchers have been investigating the use of af-
fective signals within Human-Computer Interaction (HCI) systems.
More specifically, affective signals such as heart rate, skin conductance
and facial expressions have been employed in order to build player
models and create personalised gaming experiences.

Chanel et al. [7] introduce an approach based on emotion re-
cognition, to model Tetris players with respect to three affective states:
Boredom, anxiety and engagement. They have achieved a classification
accuracy of 53.33%, using various features extracted from physiological
sensors and questionnaires. Liu et al. [19] propose real-time DDA
through player anxiety estimation, using wearable biofeedback sensors.
In the present work, we employ Facial Expression Analysis as a method
of applying real-time and unobtrusive DDA.

Facial expression analysis is a mature domain in computer vision
with techniques that boast a high level of accuracy and robustness
[11,31,18] without the requirement of expensive hardware [6]. For
example, Buenaposada et al. have reported a 89% recognition accuracy
in video sequences in unconstrained environments with strong changes
in illumination and face locations.

Zaman and Shrimpton-Smith [45] evaluated an automated facial
expressions analysis system to infer emotions that users had whilst
performing common computer usage tasks. They generally reported a
high level of correlation between the system’s findings and human ex-
pert analyses. Tan et al. [39] performed a feasibility study in using
facial expression analysis to evaluate player experiences. They con-
cluded that typical game experiences yield a good variety of facial ex-
pressions (other than neutral) with variances of expression for in-
dividual participants being generally rich.

We postulate that the affective signals provided by FEA, can be
utilised for efficient and accurate game personalisation. Since user fa-
cial expressions can be indicators of emotion [11], we investigate
whether in-game difficulty can have an impact on player affect, as ex-
pressed through the face. In our research, we will leverage FEA in an
attempt to predict the perceived and actual in-game difficulty, before
proceeding to implement our game personalisation algorithms.

3. Methodology

In this section, we will give an outline of the methodology used in
this research, as shown in Table 1.

This research is divided into two parts. The first part explores
whether FEA during gameplay can lead to accurate determination of
the perceived in-game difficulty. If it can, this will enable successful
personalisation of games using facial expression analysis. This is the
main topic of the second part, which focuses on the personalisation
procedure, proposing various algorithms aiming towards reaching op-
timal player affection levels.

In the first part, users are requested to score three different versions
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of the same game in terms of difficulty. During gameplay, we detect
player emotions and track facial Action Units (AU), which are fed as
input to classification algorithms that aim to predict the perceived in-
game difficulty.

The second part introduces two methods of translating probabilistic
estimates of player emotions into in-game difficulty adaptations. A
heuristic algorithm that adapts in-game difficulty based on player
emotion estimates, and a model of player affection levels, are trained on
emotion & head pose measurements. The goal is to build an effective
game personalisation system, which should maximise player affection
(as measured through FEA), while simultaneously converging to an
optimal in-game difficulty level, for the individual player. The results
are based on player feedback, through pairwise tests that compare the
dynamic (adaptable) version to the static version of the same video
game.

Although we acknowledge that facial expressions are not always
strictly correlated to user affective state, we have chosen to use the term
“emotion” to refer to one of the seven basic emotions as described by
Ekman & Friesen [12]. We consider these emotions (as detected by the
INSIGHT facial expression recognition SDK [35]) an adequate descriptor
of player affective state in this study’s setting.

4. Measuring perceived in-game difficulty based on facial
expression analysis

In the first part of our research, we aim to justify the use of FEA as
an appropriate approach towards game personalisation. By predicting
the perceived in-game difficulty, we show that player facial expressions
can be correlated to different versions of the same game. Building a
system that can accurately predict in-game difficulty solely by ‘looking’
at the player’s facial expressions, means that we will be able to dyna-
mically adjust in-game difficulty to provide personalised game experi-
ences. Below, we present our methods for predicting perceived in-game
difficulty, by analysing players’ facial expressions. More details about
this specific part of the study can be found in [20].

4.1. Experimental setup

In this experiment, the aim is to predict the perceived in-game dif-
ficulty through FEA. Players are asked to play different versions of the
same video game, while their facial expressions are being recorded.

4.1.1. Pacman
Pacman is a widely popular arcade game, considered one of the

classic games in its genre. The goal of the game is to navigate through a
maze while accumulating points by ‘eating’ dots. Each ‘stage’ in the
Pacman game is finished when all dots are eaten by the player.

Players participating in this experiment are asked to complete three
different versions of the Pacman game. For each version the participant
was instructed to play the game with the intention to collect all dots as
fast as possible.

Similar to several other studies (Aponte, Levieux, and Natkin [47];
Li et al. [18]; Girouard et al. [48]) this study used a version of Pacman
which the author altered to make the game more suitable for the ex-
periment. The alteration revolved around the speed by which the player
was allowed to move within the maze featured in the game. Since this
research pertains data obtained from facial expressions, it was deemed

important to eliminate factors that might negatively influence the ex-
perience of the game. Whereas ‘dying’ is a natural element of the game,
the standard Pacman game only grants the player a limited number of
lives. In our experiment, the player was granted an unlimited number of
lives in order to avoid unnecessary frustration for some levels [50].

To familiarise themselves with the game, players were first pre-
sented with a short practice session. When participants were comfor-
table with the game controls, they were directed to the experiment.

4.1.2. Facial expression recognition & hardware setup
For the experiment, two laptops were used simultaneously. One

laptop was used to run the game; another was used to record the par-
ticipants’ faces during their play sessions. The following method was
employed: participants were asked to sit in front of the first laptop on
which a webcam was mounted. The camera itself was plugged into the
second laptop that was running the recording software.

During gameplay, CERT (Computer Expression Recognition
Toolbox) was used to extract facial expression data. CERT is able to
track basic expressions of anger, disgust, fear, joy, sadness, surprise,
contempt, a continuous measure of head pose (yaw, pitch, and roll), as
well as 30 facial action units (AU’s) from the Facial Action Coding
System [1]. The Facial Action Coding System (FACS) is designed by
Ekman and Friesen and is used to “measure all facial behaviour, not just
actions that might presumably be related to emotion” [11]. Ekman and
Friesen describe action units to be anatomically separate and visually
distinguishable facial movements. For an extensive survey on automatic
facial expression analysis, including FACS, we refer readers to Fasel &
Luettin [13].

4.1.3. Data collection
The data was processed as follows: For every participant, the

average over all the frames per AU was calculated. The resulting value
was subtracted from all individual values to account for the “neutral”
expression, thereby correcting against a baseline. In the next step, the
altered values were compared with a threshold: According to
Grafsgaard et al. [49] a value (with a corrected baseline) above 0.25
indicates the presence of the emotion. The resulting values were binary,
indicating either the presence or absence of a specific expression. Fi-
nally, after each session participants were asked to rate the difficulty of
the game that they just played on a scale of 1 (very easy) to 7 (very
difficult). This value is the “perceived difficulty”.

These binary values were used in a classification task where the goal
was to predict the in-game difficulty level. For this task, the data mining
program “Orange” [10] was used. The data was processed using 10-fold
cross validation in a leave-one-out setting employing a classification
tree, a Naïve Bayes classifier, and ZeroR as a baseline method.

In total, the recordings of participants that were collected provided
117,304 instances of frame-data (vectors consisting of AU values). For
each participant, these vectors of frame data were subsequently labelled
with the specific version each vector referred to and the perceived
difficulty score that was assigned to this specific version by each par-
ticipant. The perceived game version was selected as the target class
during the classification tasks.

4.2. Results

The data for this experiment were obtained from 38 (N = 38)

Table 1
Outline of the methodologies used in this research.

Methodological Part Domain Research Goals Facial Expression Recognition Toolbox

First Part PACMAN Measuring in-game difficulty based on FEA CERT

Second Part: Heuristics INFINITE MARIO BROS. Game personalisation based on Heuristics INSIGHT

Second Part: Modeling INFINITE MARIO BROS. Game personalisation based on a trained Model INSIGHT
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participants. The average age of the participants was 35.1 years (SD
= 14.54). Of these participants, 24 were recruited in the University
library; the other 14 were selected from the of the authors’ social circle.
The data of 6 participants was left out of this research because of re-
cording failures. Of the remaining 32 participants, 18 were male, 14
female.

Participants played through three different versions of Pacman. In
version ‘A’, the speed with which Pacman moved through the maze was
slower than that of its “enemies”. In version ‘C’ Pacman’s speed was
higher than the enemies’ speed, while in version ‘B’, Pacman’s speed
was left as originally designed.

We have provided an overview of the perceived difficulty scorings
for each version, spread out over the different settings of the experi-
ment in Table 2. For each setting of the experiment, the playing se-
quence of game versions is changed. Note that the scores presented here
are subjective scores. For instance, in setting 5 of the experiment,
participants first played version C, followed by versions A and B. In
setting 2 of the experiment, the order of play was A-C-B. We see that the
perceived difficulty of each version of the game is different for each
experiment setting. For instance, whereas version A in setting 1 of the
experiment was awarded an average difficulty score of 2.8, the same
version was awarded a difficulty score of 4.2 in setting 5 and 6 of the
experiment.

Table 3 shows that a classification tree provided the most accurate
results, scoring an accuracy of 77% when predicting the perceived
version of a game, without taking the actual version into account. A
Naïve Bayes classifier provided an accuracy of 53%. While these results
pertain to a combination of all levels, in Table 3 we also observe how
the classification accuracy increases up to 90% when the actual game
version is taken into account. This increase can be explained by the fact
that the classifier uses a smaller training set, which is likely to have a
more dominant majority class.

4.3. Discussion

Regarding perceived difficulty scores, Table 2 might seem coun-
terintuitive and raise some questions. We expected that participants
would rate Pacman version ‘C’ at a lower difficulty score than the other
versions, since Pacman’s moving speed was higher than the speed of its
enemies. Version ‘A’ was expected to be rated as the most difficult one,
given that Pacman was unable to “shake off” trailing ghosts. However,
we observed that it required more game-playing skill to keep up with
the fastest version (‘C’), and only experienced players would rate that

version at a lower difficulty.
For all classification tasks, Naïve Bayes underperformed when

compared to classification via a decision tree. Naïve Bayes classifiers
assume that features are independent, while in our case, even though
facial expressions can be isolated, the dynamics of the human face make
it that facial expressions are often correlated or even dependent. For
instance, to express disgust, a person has to use both the nose (AU 4)
and the upper-brow (AU 9/10) to make the appropriate expression.
Feature independence might cause Naïve Bayes classifiers to mistakenly
assume that the AUs are independent of each other, whereas in actu-
ality they are found in conjunction.

The results of the present study point in the direction where it is
possible to accurately predict the perceived difficulty of a game. We
were able to predict the perceived game version with an accuracy of
77%. However, when currently played game version was included as a
classifier feature, prediction accuracy was increased to 88.7%.
Considering the high accuracy of our predictions of the current diffi-
culty of the game, it is implied that it is possible to use this data to make
effective adjustments to the game.

4.4. Conclusion

In this preliminary study, we focused on confirming whether FEA
can provide a sufficient tool towards personalised gaming. We have
shown that in-game difficulty can be accurately measured solely
through FEA. The ability to predict in-game difficulty through player
facial expressions allows us to assume that varying in-game difficulty
settings can trigger different emotions from the player, and conse-
quently, indicate that facial expressions are an adequate descriptor of
player affection level.

Based on these findings, we proceeded to implement an online and
unobtrusive game personalisation mechanism, using FEA. In our main
study, in-game difficulty will be dynamically adapted based on players’
affective state, measured during gameplay.

5. Adapting in-game difficulty based on facial expression analysis

Having shown that player facial expressions can be correlated to in-
game difficulty settings in Section 4, we will proceed to implement
game personalisation algorithms. This section is focused on translating
FEA data into actual in-game difficulty adjustments, creating persona-
lised game spaces tailored to the individual player.

By introducing game personalisation methods we aim to achieve
and retain a high level of user engagement. Based on the study in [8],
our goal is to dynamically adjust in-game difficulty to keep players
engaged for as long as possible.

This study is divided into two distinct sections: The initial (heur-
istic) approach describes heuristic methods of translating player emo-
tions (as measured through FEA) into in-game difficulty adaptations,
using a Gradient Ascent Optimisation (GAO) algorithm. The extended
(modeling) approach is an extension of the former, by introducing head
pose measurements (pitch, roll and yaw) as well as classification al-
gorithms in order to create a probabilistic model of players’ affective
state. The model will ultimately be used to predict optimal in-game
difficulty adjustments during gameplay.

5.1. Experimental setup

5.1.1. INFINITE MARIO BROS

We consider a typical video game: INFINITE MARIO BROS.[25]; an open-
source clone of the classic video game SUPER MARIO BROS. It can be re-
garded an archetypic platform game; despite its relatively straightfor-
ward appearance it provides a diverse and challenging gameplay ex-
perience. We built upon a version of INFINITE MARIO BROS. that has been
extended to procedurally generate entire Mario levels. These extensions
have been made by Shaker et al. [32–34], Pedersen et al. [23,24], and

Table 2
Perceived difficulty scoring by players for each version of Pacman on a 7-point
scale. Each experiment setting indicates the order in which game versions were
played.

Perceived Difficulty

Experiment setting version A version B version C

1. A-B-C 2.8 3.5 3.8
2. A-C-B 4.2 5.0 4.0
3. B-A-C 3.0 5.0 3.4
4. B-C-A 3.0 4.0 3.2
5. C-A-B 3.0 4.2 3.2
6. C-B-A 3.0 3.2 4.2

Table 3
Prediction accuracy of perceived game version using facial expression analysis.

Method Combined version A version B version C

Classification Tree 77% 90% 87% 89%
Naïve Bayes 53% 63% 70% 74%

ZeroR 44% 32% 45% 55%
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Togelius et al. [41].
We have made two further enhancements to the 2011 Mario AI

Championship game engine of INFINITE MARIO BROS. First, we enhanced the
engine such that it is able to procedurally generate segments of Mario
levels while the game is in progress (Fig. 1). One game segment has a
width of 112 game objects, and generally takes a player approximately
20–30 s to complete. This enhancement enables feedback on the ob-
served player experience to rapidly impact the procedural process that
generates the upcoming level segments. The upcoming level segments
are generated seamlessly, such that no screen tears occur when the user
is transitioning from one segment to the next (i.e., before the next
segment can be observed a short ‘gap’ block is injected in the game
space).

Our second enhancement to the game engine, is that within every
segment we can now inject short chunks of specific game content. We
enabled the game engine to generate five different types of chunks, (1)
a straight chunk, containing enemies and jumpable blocks, (2) a hill
chunk, also containing enemies, (3) a chunk with tubes, containing
enemy plants, (4) a jump, and (5) a chunk with cannons. Each chunk
can have six distinct implementations, determined by a per-chunk in-
teger parameter [0, 5]. The challenge level of the chunk mono-
tonically increases with the parameter value (e.g., a hill parameter
value of 0 entails a chunk with no hills and no enemies, while a value of

>N N, 0 entails N procedurally-generated hills with N relatively diffi-
cult enemies). Our enhanced engine has the desired property that the
generated chunks are largely independent from each other, i.e., only in
rare cases will one chunk be able to affect player behaviour in the
surrounding chunks (e.g., a cannon bullet following the player to the
next chunk). To benefit playability and level aesthetics, the order in
which the chunks are encountered is randomised for each new segment.
The five chunks (each 16 game objects in length) are preceded and
succeeded by a flat, neutral chunk (also 16 game objects in length), to
allow the player to prepare for the next game segment. To avoid player
emotion estimates being “carried” from one segment to the next, a brief
straight section has been added between segments, where we expect
player facial expressions to fade out.

In both studies conducted (Sections 5.2 and 5.3), participants were
asked to compare an adaptive to the static (baseline) version of SUPER

MARIO BROS. The experiments were conducted in a home setting, with
stable lighting conditions. In the static game, each chunk’s difficulty is
pre-defined and persistent throughout the entirety of the session. All
chunks were assigned the same difficulty level …D [0 5], namely =D 1
for the ‘easy’ setting, =D 3 for the ‘normal’ setting and =D 5 for the
‘hard’ setting. Difficulty level 1 was chosen over difficulty level 0 as the
‘easy’ setting, as difficulty level 0 removes all obstacles from the game
and makes it impossible for the player to fail. We consider the static
version to be a valid baseline, since the quality and quantity of obstacles
is predefined for each of the difficulty levels. This type of game re-
sembles the classic SUPER MARIO BROS. game, which we assume was de-
signed to maximise entertainment.

5.1.2. INSIGHT facial expression recognition toolkit
In our approach, player emotions are tracked with the INSIGHT facial

expression recognition SDK [35] during the entire game session, yet are
taken into account independently for each chunk. We used INSIGHT ra-
ther than CERT in this part of the study for licensing reasons. That is,
player expressions measured in chunk c (e.g., a chunk with cannons as
content), will in our approach only affect the challenge level of that
particular chunk type. As a result, online personalisation is achieved at
the content level of the game. This characteristic allows the online per-
sonalisation to specifically tailor the challenge level of a certain content
type, to the measured affective state of the player when interacting with
this content.

INSIGHT classifies facial expressions at approximately 15 frames per
second. For each frame, it outputs a probability distribution over seven
distinct emotions, namely (1) neutralness, (2) happiness, (3) disgust,

(4) anger, (5) fear, (6) sadness, and (7) surprise. Player emotions are
being recorded over the course of a game session and used as input for
the game adaptation mechanism, in the form of a vector …e e e[ , , , ]1 2 7 ,
where en represents the probability estimate of a player expressing
emotion n. Data is enriched by timestamps for each tracked frame, in
order to allow the game engine to correlate between game frames and
INSIGHT tracked frames. Depending on the progress of the player through
the Mario game, a game chunk is typically interacted with for 2–10 s,
resulting in a total of 30–150 classifications for each game chunk se-
parately. The resulting probability distributions are averaged at the end
of each chunk, into an estimate of a players’s emotional state; it is an
estimate that is relatively insensitive to classification noise of the facial
expression system (which may occur in individual frames).

5.1.3. Facial expression tracking
There are two events at which assessments of the player’s affective

state are used to adapt the game; namely (1) when the next level seg-
ment needs to be generated, and (2) when the game resets due to player
death. To this end, we take into consideration not only player assess-
ments made during actual play of the game, but also in between in-
game deaths of the player – as we observed that during this observa-
tional period many game players express high emotional activity.
Furthermore, we particularly consider that most game players tend to
maintain a relatively neutral facial expression during gameplay, with
most emotional activity occurring when players experience an in-game
death.

The described experimental setup is employed in two distinct ex-
periments, described in the following sections.

5.2. Heuristic Approach: Game Personalisation through Facial Expression
Analysis1

The heuristic approach uses a heuristic method of adjusting in-game
difficulty based on classifications of player emotions. The main chal-
lenge in this respect is making accurate assessments of the player’s
expressions while he is playing the game, and mapping these assess-
ments into challenge levels that are appropriate for the observed player.
To that end, we employ a Gradient Ascent Optimisation (GAO) tech-
nique. GAO aims at optimising the challenge levels for each content
type in the game (i.e., for each chunk type) such that human interac-
tions with the content yield affective states that we consider desirable
(i.e., happiness), while not yielding affective stances that we do not
consider desirable (i.e., anger). In the present setup, we consider anger
an undesirable emotion, and happiness a desirable emotion.

In this experiment, we investigate how participants experience the
personalised game under actual game playing conditions, in compar-
ison with a realistic (baseline) static game. To this end, in accordance
with procedures employed by Shaker et al. [32]), we query for pairwise
preferences (i.e., “is system A preferred over system B?”), a methodology
with numerous advantages over rating-based questionnaires (e.g., no
significant order of reporting effects) [44]. We perform pairwise tests of a
static system s, with a fixed difficulty level, and a personalised system p.
The experiment follows a within-subjects design composed of two con-
ditions (C1 and C2), consisting of a series of three sequentially per-
formed pairwise tests, in randomised order. The pairwise tests compare
the static system vs. the personalised system, both starting at identical
challenge levels. Table 4 gives an overview of the resulting experi-
mental conditions, with the initial challenge level of a system indicated
between brackets.

The experiment is performed on ten participants, aged between 23
and 28 years, recruited at the University of Amsterdam. To minimise
user fatigue impacting the experimental results, each of the six game-
playing sessions is ended after a maximum of 4 level segments (i.e.,

1 This section builds upon experiments that have been published in [5].
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approximately three minutes of play). After completing a pair of two
games, we query the participants’s preference through a 4-alternative
forced choice (4-AFC) questionnaire protocol (e.g., s is preferred to p p,
is preferred to s, both are preferred equally, or neither is preferred). The
question presented to the participant is: “For which game did you find
the challenge level more preferable?”.

Fig. 2 lists the pairwise preferences as reported by the participants.
The results show that when both gaming systems are set to an initial
challenge level of ‘easy’, a significant majority (Z-test: =p 0.037) of
participants prefers the personalised system over the static system
(seven over three participants). Furthermore, we observe that when
both gaming systems are set to an initial challenge level of ‘normal’, a
significant majority (Z-test: =p 0.037) of participants prefers the per-
sonalised system over the static system (also seven over three partici-
pants). However, when both gaming systems are set to an initial chal-
lenge level of ‘hard’, only four participants prefer the personalised
system over the static system (three participants), with the remaining
three participants preferring neither.

Overall, we detect a preference towards the personalised system in
18 out of 30 tests, while only in 9 out of 30 tests the static system is
preferred.

5.3. Modeling approach: game personalisation through facial expression &
head pose estimation analysis

This approach discusses dynamic difficulty adjustment through a
trained player model, which is based on facial expression & head pose
estimation analysis. Similarly to the heuristic approach, our aim is to
translate player emotions into in-game difficulty adjustments. However,
instead of using heuristics, we employ a classification task to predict
player challenge level (the perceived chunk-specific difficulty level).

5.3.1. Model feature selection
Although neutralness, anger and happiness were the most fre-

quently expressed emotions, all emotions classified by INSIGHT will be
employed as features in our model. In that way, in cases where hap-
piness, anger and neutralness are not the ‘dominant’ observed emotions,
we are still able to extract information about player engagement.

Furthermore, to be able to measure user engagement beyond facial
reactions, we have decided to track head pitch, roll & yaw along with
the emotions vector. We have observed that players tend to change
their posture with respect to the computer screen during the course of a
game, either impreceptively or suddenly, while expressing certain
emotions. Such movements can negatively impact the quality of the
emotion estimations made by INSIGHT. For example, by tilting their head
downward, players may be mistakenly classified as ‘angry’ even though
their expression is neutral. By adding head pitch, roll & yaw to our
system we aim to correlate emotion measurements with head pose
measurements, in an attempt to ‘explain’ sudden bursts of emotions.

Lastly, we have decided to add both current in-game difficulty and
an estimation of player challenge level to the feature set. Current dif-
ficulty level tracking can help discriminate spontaneous from consistent
emotional activity, assuming that harder difficulty levels can cause
persistent frustration, while lower difficulty levels tend to be en-
countered with higher average neutralness by players. Furthermore, in
Section 4.2 we have shown that incorporating the actual difficulty level
in the classifier substantially improves predictions on perceived diffi-
culty. Challenge level is represented by a user-feedback based 5-point
Likert scale for each game chunk. It is an integer value in the span [1,2,
…,5], with 1 meaning ‘too easy’, 5 meaning ‘too challenging’ and 3
representing ‘optimal challenge level’.

5.3.2. Model training
We have chosen to predict player challenge level using a Random

Forest Classifier (RFC), because it enables us to retrieve a probability
distribution over all possible output classes given unknown input. Also,
its computational efficiency is considered to be appropriate for online
adaptation. The RFC parameters used were

= = =depth unlimited numberOfIterations bagSize, 100, 100.
In order to train the RFC, we introduced players to the personalised

game, and asked them to finish 10 segments of INFINITE MARIO BROS. at
each difficulty level ([1,2,…,5]). After completing each segment, users
manually determined a Likert value (1–5) for each chunk separately
through an in-game self-report prompt. This user feedback-based
method has been employed in previous studies, such as Shaker et al.
[32], and derives from IJsselsteijn’s Game Experience Questionnaire
(GEQ) [15]. In total, we have created a training set of approximately
1250 instances (25 participants), each labeled with a Likert estimate.
We have selected both female and male players with varying skill

Fig. 1. Our enhanced version of INFINITE MARIO BROS.
During gameplay it generates short new level seg-
ments of specific content on-the-fly, on the basis of
classifications of the facial expression.

Table 4
Pairwise tests of the static system versus the personalised system. The initial
challenge level is indicated between brackets.

Initial challenge level Condition 1 Condition 2

Easy s(easy) vs. p(easy) p(easy) vs. s(easy)
Normal s(normal) vs. p(normal) p(normal) vs. s(normal)
Hard s(hard) vs. p(hard) p(hard) vs. s(hard)

Fig. 2. Pairwise preferences of participants, per initial challenge level. The le-
gend is a as follows, ‘P’ indicates a preference for the personalised system, ‘S’
indicates a preference for the static system, ‘B’ indicates that both are preferred
equally, and ‘N’ indicates that neither is preferred; both are equally un-
preferred.
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levels, to train the RFC, so as to include as much variety in our data as
possible during the training phase.

In Fig. 3, the average Likert value determined by the players par-
ticipating in the training phase is illustrated. One can observe a ten-
dency of the average user to consider the hardest ‘Jump’ chunk possible
(5) as the approximately optimal challenge level, while most of the
chunks’ optimal challenge level (3) seems to lie between difficulty le-
vels of 3 and 4.

Player challenge level, described via the Likert estimate, is our
model’s target class, during the testing phase. When unknown instances
are acquired by players, the expected output of the RFC is a probability
distribution over the Likert estimates for each chunk type. The classi-
fication task is performed at the end of each segment, or right after in-
game death. The Likert probability distribution estimated online by the
RFC will immediately be used to perform game adaptations as de-
scribed below.

Algorithm 1. Game Personalisation using a Random Forest Classifier

1: procedureRFCPERSONALISATION(In) ▷Unknown Instance
2: P classifyInstance I( )Li n

3: fori each chunk: do
4: =E L i P[ ]*likert Li
5: =E E *1.5 4.5normalised likert
6: round E( )normalised
7: =newDifficulty previousDifficulty Enormalised
8: returnnewDifficulty

5.3.3. Game personalisation
Algorithm 1 describes the game personalisation procedure im-

plemented in this approach. Feeding the observed instance I( )n into the
RFC classifier, we obtain a probability distribution PLi over all possible
Likert classes Li [1, 2, 3, 4, 5]. We then calculate an overall Likert
estimate value =E L i P[ ]*likert Li. Using this value, game adaptations will
take place, by adjusting the game difficulty for the next game segment,
for each chunk individually. However, before actually calculating the
next game difficulty setting, we normalise Elikert to calculate

=E E *1.5 4.5normalised likert . This normalisation factor adjusts the
minimum and maximum increase/decrease applied onto game diffi-
culty to lie in the span of integers [-3,-2,…,3]. By doing this, we avoid
increasing/decreasing game difficulty by extreme values (−5, −4, +4,
+5) when the Likert estimate is close to its limits (1 or 5), an adap-
tation which we consider too steep to take in one single step of the
personalisation algorithm.

5.4. Modeling approach: experiments & Results

In this section we will discuss the experiments and results retrieved,
regarding the modeling approach.

5.4.1. Online personalisation - pairwise tests
In order to assess the modeling approach we have ran a set of

pairwise tests, in which participants were asked to complete three
segments of two different versions of INFINITE MARIO BROS.: a static
(baseline) version versus a personalised version. After completing both
tasks in three distinct difficulty levels (easy, normal, hard), the parti-
cipants were asked to answer the following questions:

• For which game did you find the challenge level more appropriate?
• Which game did you find more challenging?
• Which game did you find more immersive?
• Which game did you find more frustrating?

Note that participants were not aware of the currently played game
difficulty, and that the sequence in which different difficulty levels
were played was randomised.

A total of 25 players (20 male, 5 female) compose the test set in this
experiment. These participants have been recruited at the University of
Amsterdam and the authors’ social circle, and are not included in the
model training data. The answers available to them again follow the 4-
AFC protocol, as in the heuristic approach’s experimenting, meaning
that participants could choose P over S or S over P, both equally pre-
ferred or both equally unpreferred.

5.4.2. Pairwise tests - challenge level
As Fig. 4 illustrates, a majority of the participants show preference

for the personalised version of the game when starting at ‘easy’ and
‘normal’ difficulty settings. However, preference levels tend to drop as
the starting difficulty setting gets harder. Staring at ‘hard’ difficulty
settings, even though the personalised version was not preferred by the
majority of the participants, it was still more preferable than the static
version.

As in the heuristic approach, players seem to favour a personalised
gaming experience rather than a static one. However, even though the
majority is statistically significant, one can observe a portion of the
participants choosing neither of the two versions, when starting at hard
game difficulty. This implies that our system is adapting game difficulty

Fig. 3. Average chunk specific Likert preference during system training.

Fig. 4. Pairwise preferences of participants on the modeling approach, per in-
itial challenge level. The legend is as follows, ‘P’ indicates a preference for the
personalised system, ‘S’ indicates a preference for the static system, ‘B’ indicates
that both are preferred equally, and ‘N’ indicates that neither is preferred; both
are equally unpreferred.

P.M. Blom, et al. Entertainment Computing 31 (2019) 100307

7



efficiently at easy and normal starting difficulty settings, but drops in
performance during hard difficulty game sessions. A possible explana-
tion is that user anger – which should be the main adaptation factor in
this case – may not be a sufficient descriptor, or the system should be
fine-tuned so as to bring sharper in-game adaptations when anger is
detected.

A significance test (Z-test) has been run on the above results, with
the preference of the majority for the personalised version being sig-
nificant in all starting conditions: =p .0001 in the ‘easy’ condition,

=p .0008 in the ‘normal’ condition and =p .005 in the ‘hard’ condition.

5.4.3. Pairwise tests - demographics
In order to be able to explain the high percentage of participants

choosing neither of the two versions when starting at ‘hard’ game dif-
ficulty levels, we have analysed the demographic information they have
provided us with.

Table 5 illustrates the answers retrieved by the participants on the
secondary questions. As can be observed, when starting at easy or
normal game difficulty settings, the personalised version is consistently
considered to be the most challenging, immersive but also frustrating
version. However, when starting at hard game difficulty settings, the
personalised version is equally preferred to the static one as ‘most im-
mersive’, while still considered to be the most challenging one. An
important observation in this case is that the static version dominates
over the personalised one as ‘most frustrating’ with a percentage of 83%
over 0%. We believe this phenomenon refers to the fact that the per-
sonalised version most of the time adapts to the player’s frustration and
decreases game difficulty, whereas the static version is not designed to
adapt, thus, maximises potential player frustration. However, studies
like [29] have shown that video games can still be considered engaging
while being frustrating. Thus, we may interpret the frustration detected
right after in-game death as a possible motivational factor, as long as
the participants do not abandon the game.

Regarding players abandoning the game before finishing the ex-
periment, we found that those who abandoned, on average, played
considerably less hours per week from those who finished the experi-
ment (6.5 v. 23 h spent gaming per week). As a consequence, we may
state that our system is partially dependent on player skill level, al-
though game abandonment may occur for reasons other than lack of
player skill. Furthermore, players with a higher average of hours spent
gaming per week, generally required less effort to familiarise with the
game’s controls, if not already familiar.

5.5. Discussion

Below, we will analyse the findings of our main study, particularly
focusing on in-game difficulty adaptation, as well as in-game difficulty
convergence to an appropriate level, for the individual player.

It is clear that in both versions of our game personalisation system
as described in Sections 5.2 and 5.3, a significant majority of the par-
ticipants has consistently preferred the personalised version over the
classical (static) version of the game, starting at ‘easy’ and ‘normal’
difficulty settings.

Putting the two different approaches in comparison, in the modeling
approach (5.3) we observe improved system convergence, i.e. the
number of game segments necessary in order to reach an ‘optimal’ in-
game difficulty setting is reduced in the modeling approach (see
Fig. 5a–e).

5.5.1. Adapting to the individual player
In general, we have observed smoother adaptations of in-game

difficulty in the modeling version of our system. As Fig. 3 shows, users
who participated in the model’s training set have set the optimal dif-
ficulty settings (Likert value of 3) between difficulty levels 3 and 4. The
trained model can consistently correlate different facial expressions
(which may include head movement) to a particular user challenge
level, leading to smoother in-game adaptations, while the same user
behavior would lead to steep adaptations in the heuristic system.

For example, in Fig. 5a–e we illustrate how the heuristic and
modeling version of our system adapt the game to the same player,
when starting at hard in-game difficulty settings in a four segment game
session. We observe that the modeling version favours smoother game
difficulty adaptations, but does not decrease difficulty below level 3.
However, the first system allows steeper adaptations, which can lead to
lower in-game difficulty (between 1 and 2) which might be preferred by
this particular user.

5.5.2. Difficulty setting convergence
We have also examined whether (and how) in-game difficulty set-

tings converge to the appropriate levels for the individual player.
Generally, players tend to gain game skills throughout a game session.
Our system should be able to immediately adapt to fast changes in
player skill.

Looking at Fig. 5a–e, it is obvious how the modeling version of our
system converges to the appropriate game difficulty setup after ap-
proximately 12 iterations of the algorithm, whereas the first system has
not managed to converge to the optimal setup in the same time. The
latter means that either the user’s emotions are not yet stable through
consecutive segments, or the user’s neutral expression levels are still
high. However, we may state that the difficulty settings determined by
the first system by the end of the session are aiming towards the setup
which the modeling version has converged to.

6. Conclusion

In the present study, we attempted to predict the difficulty of games
using facial expression data of players. As shown, we were able to
predict with relatively high accuracy (72%) the actual difficulty level
that is being played based on the facial expressions of players. We were
able to predict with 77% accuracy the perceived difficulty of a game
when multiple levels are taken into account at the same time, whereas
taking these levels into account individually resulted in 88% accuracy.

Regarding the game personalisation methods presented, user studies
that validated these in the actual video game INFINITE MARIO BROS. revealed
that game personalisation through heuristic methods can provide an
effective basis for converging to an appropriate affective state for the
individual player. Furthermore, building a model of player affective
state made accurate in-game difficulty adaptation possible even
through noisy emotion estimations (due to head movement), while it

Table 5
Participants’ preferences starting at ‘easy’, ‘normal’ and ‘hard’ game difficulty
settings. The legend is as follows, ‘P’ indicates a preference for the personalised
system, ‘S’ indicates a preference for the static system, ‘B’ indicates that both are
preferred equally, and ‘N’ indicates that neither is preferred; both are equally
unpreferred.

Initial Difficulty Most Challenging Most Immersive Most Frustrating

Easy P 95% 100% 75%
S 5% 0% 25%
N 0% 0% 0%
B 0% 0% 0%

Normal P 71% 57% 67%
S 29% 23% 33%
N 0% 4% 0%
B 0% 16% 0%

Hard P 55% 39% 0%
S 33% 39% 83%
N 0% 11% 0%
B 12% 11% 17%
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also achieved faster convergence compared to the heuristic method. As
such, we may draw the overall conclusion that online and unobtrusive
game personalisation is feasible by solely using facial expression ana-
lysis, while head pose detection can contribute to an even more effec-
tive game adaptation mechanism.

For future work, we aim towards improving the accuracy of our

model (described in Section 5.3). This could be achieved by simply
enriching the training set with observations from more players, re-
gardless of age, gender or skill level. The present study’s small parti-
cipant pool may negatively affect the integrity of the statistical methods
used[17]. Furthermore, we would like to investigate how adding more
features to our classifier may further enhance player modeling. Both

Fig. 5. Comparison of difficulty adaptation (per chunk) in the heuristic and modeling approach.
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multi-modal modeling and multi-objective learning are fields of cur-
rently conducted research [30].
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