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ABSTRACT
In this paper, we study the effect of time pressure on player be-
haviour during a dilemma-based crisis management game. We em-
ploy in-game action tracking, physiological sensor data and self-
reporting in order to create multi-modal predictive models of player
stress responses during a crisis management scenario. We were
able to predict the experimental condition (time pressure vs. no
time pressure) with 84.5% accuracy, using a game-only feature set.
However, lower accuracy was observed when physiological sensor
data was used for the same task. The method presented in this paper
can be employed in crisis management training, aiming at assessing
players’ responses to stressful conditions and manipulating player
stress levels to provide personalised training scenarios.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; • Applied computing → Interactive learning envi-
ronments.
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1 INTRODUCTION
Crisis management is a highly stressful task. Professional crisis re-
sponders need to develop a multitude of behavioural competencies
including leadership, teamwork, and stress resilience, in order to
be able to deal with crises efficiently and consistently. To main-
tain a high level of preparedness, crisis responders attend regular
training sessions where artificial crisis scenarios are “solved” in
a cooperative manner. In this paper, we simulate a crisis manage-
ment training session through the use of an applied game called
the Mayor’s game [27]. The Mayor’s game is a text-based decision
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making game which allows running dilemma-based crisis scenarios
while monitoring player in-game and physiological activity. Our
aim is to model player behaviour under the effect of an artificially
induced stressor.

To recreate a realistic crisis management setting, we need to
be able to increase players’ stress levels during gameplay. There
are many methods in which player stress levels can be manipu-
lated during a game session, such as time pressure, information
complexity, or external distractions. In this study, we selected time
pressure as a means of intensifying the game pace and inducing
additional stress onto players. Time pressure has been employed
as an in-game stress induction mechanism in previous studies re-
volving around decision making during crises and is considered
a condition that is likely to appear in a real-life crisis setting [14].
Therefore, we expect additional time pressure to have a noticeable
effect on player physiology and in-game behaviour during a crisis
management game session. For the context of the present paper, we
refer to the term “stress” as the mental tension players experience
when given the responsibility to take complex, high-stake decisions
in a limited amount of time.

2 RELATEDWORK
Affective computing is defined as computing that relates to, arises
from, or influences emotions [23]. Over the years, numerous inter-
faces to measure, identify and induce human emotions have been
employed in human-computer interaction tasks. In this study, we
leverage physiological wearable sensors; a non-invasive interface
capable of objectively measuring user stress responses.

Physiological sensors have been previously used for user emo-
tion recognition [7, 11], entertainment modeling [16, 30] and stress
detection [8, 21]. Physiological signals such as skin conductance
and heart activity have been employed as objective descriptors of
user player affective state during gaming [16, 28]. More specifically,
several studies have focused on the analysis of user experience
through biofeedback during shooter games [5, 22]. Our aim is to
process and analyse such physiological signals in order to model
player behaviour, expecting that artificially induced stress will have
an impact on players’ physiological measurements.

In this study, we have chosen to employ time pressure as a
method of inducing additional stress onto players, aiming to ob-
serve the effects on players’ physiological responses and in-game
behaviour. The influence of time pressure on judgement and deci-
sion making has been investigated thoroughly in previous studies
focusing both on the cognitive aspects [6, 17, 19], and the practical
effects on specific tasks, such as fire ground command [12, 13].

What is particularly relevant to crisis management training, is
that the addition of a “deadline” in decision making tasks not only
increases humans’ feeling of time pressure, but has broader effects
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Figure 1: The Mayor’s game. Players are required to solve
a scenario by answering yes-or-no type dilemmas with the
help of five additional advisors.

on their affective state. Through a user study, Maule, Hockey and
Bdzola [18] conclude that the induction of time pressure causes
increased user awareness, while users were reportedly feeling more
“energetic” during a decision making task.

When modeling player stress responses, we anticipate that
physiological measurements yield accurate results. We investigate
whether additional modalities regarding player behaviour can in-
crease the accuracy of our models. To that end, the present study
relies on player modeling based on heartrate (HR) and skin con-
ductance (SC), but also in-game and self-report data. In a relevant
study, Holmgård et al. [10] employ blood volume pressure (BVP)
and SC signals to implement models of PTSD patients’ physiological
responses within the StartleMart game. They validate their obser-
vations by correlating specific sensor features to submitted player
self-reports. Even though treatment efficacy is not investigated
through their study, they conclude that their findings can be ap-
plied in personalised training environments that support diagnosis
and treatment of PTSD. In similar fashion, we explore the possibil-
ity of player stress response modeling through multiple modalities,
while at the same time investigating possible correlations between
them.

In order to build effective crisis management training tools, it
is necessary to define the key characteristics that a crisis manager
must possess in order to perform when it matters most. Compe-
tencies like decisiveness, communication and stress resilience (also
called “soft skills” [4]) are only a few examples of abilities that
must be developed and trained [25]. “Classical” crisis management
training consists of role-playing exercises where crisis scenarios
are solved collaboratively [1]. Additional training tools have been
introduced, including digital simulations focusing on teamwork &
collaboration [24], strategic planning [26] and education of crisis
management staff [1, 25]. Large-scale real-life training exercises
have also been applied, such as the Bonfire crisis management
simulation in the Netherlands [9]. For an extensive review on col-
laborative crisis management games, we refer readers to Di Loreto
et al. [4].

3 METHODOLOGY
In order to study the effects of time pressure in a crisis management
game, we have chosen to implement predictive models of player
behaviour through multiple modalities. Our models are based on a
set of 52 features which were exctracted from in-game logs, physio-
logical sensors and self-reports and have been previously described
in [20]. The accuracy of our models along with statistics on feature
importance, can interpret the effects that time pressure had on
player physiology and playstyle.

We employed the Mayor’s game (Figure 1) in order to develop a
virtual crisis management scenario. TheMayor’s game is a dilemma-
based scenario game primarily designed to test leadership skills
[27]. Scenarios built for the Mayor’s Game have been designed by
the Human Behaviour Analytics Lab [15] in close collaboration
with crisis management experts. For that reason, and despite the
game’s low-fidelity design, we expect that through the Mayor’s
Game we deliver high-quality crisis management experiences.

In the Mayor’s game, the player becomes mayor of a fictional
town which is undergoing a crisis. The crisis is described by an
introductory text and is further unraveled through dilemmas which
are sequentially presented to the players. Looking at Figure 1, we
see that the main game screen is divided into two parts. In the top
half, five advisors are shown, representing experts from various
insitutions (police department, fire brigade, legal advisors etc.).
The advisors provide additional information to each dilemma in
form of text, reflecting their institution’s point of view. In order
to acquire the additional information, players need to click on the
information blobs above the advisors’ avatars. Advisors can also
provide an answer suggestion on demand, in the form of a green
‘tick’ (suggesting a ‘yes’ answer) or a red ‘X’ (suggesting a ‘no’
answer). In the bottom half of the screen, the current list of to-
be-asnwered dilemmas is presented, while the main text box with
the additional information texts, dilemma description and possible
answers is shown. Lastly, in the top left of the screen there is a
countdown timer, indicating the time left to solve the scenario.

The scenario that is used in our study revolves around a chemical
leak resulting from a train accident and consists of eight dilemmas.
Each dilemma is accompanied by one piece of additional informa-
tion from each advisor. Since players need to click on the infor-
mation blobs to acquire the additional information, reading all the
additional information is not mandatory. The dilemmas are all “yes
or no” type of questions, and there is not one correct answer; any
answer will eventually lead to the end of the scenario.

For this experiment, 82 participants were recruited at Twente
University, all current students of the institution. Out of those, 10
participants were excluded because of sensor recording failure. Of
the remaining 72 participants, 48 were female and 24 were male,
with an average age of 20.48 years (SD = 1.63). The experiment was
conducted in a laboratory area to minimise distractions from the
outside. To collect physiological data, Shimmer3 GSR+ [3] sensors
were used. Physiological signal analysis is based on van Gent et al.
[29].

Players were divided into two groups. Participants in the control
group (N=38) played a baseline version of the scenario lasting 15
minutes, without any external distractions. Participants in the ex-
perimental group (N=34), were given three minutes less (12 minutes
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Method Game-only Sensor-only Combined
Baseline 52.8% (52.8%) 52.8% (52.8%) 52.8% (52.8%)
Random Forest 84.5% (80.1%) 67.9% (61.1%) 75.0% (68.5%)

Table 1: Results of predicting experimental condition, using
game, sensor, or both sets of features combined. Scores out-
side parentheses represent prediction accuracy when self-
report features are excluded from the dataset, while scores
in parentheses represent prediction accuracy when self-
report features are included.

in total) to solve the same scenario. The amount of time subtracted
was heuristically determined, in order to induce time pressure but
still allow players enough time to read all the additional informa-
tion pieces. Additionally, players were reminded of the time left
by the experiment coordinators in two minute intervals, while an
additional large monitor displaying a countdown timer was placed
in the room.

4 RESULTS
This experiment was designed to induce additional stress onto the
experimental group’s participants through time pressure, aiming
to cause variation in physiological and in-game behaviour between
participants in the two different groups. The set of features ex-
tracted from each modality aims to provide a detailed description
of player physiological stress responses and in-game behaviour.
We have added a binary variable to our dataset, representing each
participant’s group (0 for control, 1 for experimental), and ran pre-
diction tasks to investigate whether our extracted feature set can
accurately predict that variable. High accuracy in predicting the
experimental condition would mean that there is indeed variation
in participants’ behaviour among the two different groups.

We ran three separate classification tasks, each using a different
feature set, accross all participants. We compare two classification
methods; as a baseline classifier we used scikit-learn’s “dummy
classifier”, which always predicts the most frequent label in the
dataset. We chose to test the accuracy of a random forest classi-
fier (N_estimators = 10, criterion=‘‘gini’’, max_depth=∞)
through 10-fold cross-validation, which the authors have previously
employed successfully for identifying player affective state through
facial expression analysis [2].

As illustrated in Table 1, we tested separate predictive models
built with in-game and physiological sensor features, as well as a
model trained on a combination of both modalities’ features. The
results show that a random forest classifier achieved 84.5% accuracy
when trained on the in-game feature set, while the physiological
sensor-based model reached 67.9%. The combination of both feature
sets achieved 75% accuracy.

Features timeToAnswer and timeOpen showed the highest im-
portance during random forest classification. Both of these features
are related to players’ playstyle (time required to read & answer
each dilemma). Participants in the control group tended to spend
more time in answering the first four dilemmas of the scenario,
leaving them with less time to answer the latter four. On the other

hand, participants in the experimental condition tended to distrib-
ute time spent more equally accross all dilemmas. This explains the
higher accuracy when predictions are made using only the in-game
feature set to train the model.

Lastly, we added self-report data including scores of valence
and arousal during the game as additional features to the random
forest classifier. The reported valence and arousal scores showed
no statistically significant difference between the two experimental
conditions. Table 1 indicates that adding the self-report features to
the dataset, caused a drop in classification accuracy.

5 DISCUSSION
Results indicated that the separate modalities that were used to
predict the experimental condition yielded different results. In fact,
a model trained using only in-game features, achieved the highest
accuracy accross all classification tasks (84.5%). In contrast, models
trained using only sensor-derived features, showed relatively low
classification accuracy (67.9%). When the two feature sets were
unified to train a multi-modal model, we achieved a 75% accuracy.

Since time pressure was increased in the experimental group, we
expected the retrieved physiological sensor data to be indicative
of that condition. Instead, we notice that the induction of addi-
tional time pressure seemed to have more impact on participants’
in-game behaviour rather than physiology. Given that the use of
the physiological sensor dataset is necessary to generalise this
study’s results accross multiple games or scenarios, we believe that
a multi-modal approach should be preferred. Even with relatively
low accuracy, we were able to predict the existence of time pres-
sure regardless of the training scenario currently used. The use of
in-game data as the individual input channel to our stress response
model greatly increased accuracy; however, without any informa-
tion about the players’ physiological state, we would not be able
to explain whether differences in in-game behaviour derive from
induced stress or a player’s strategical decisions.

In Table 1, we observed a decrease in experimental condition
prediction accuracy when self-report features are included in the
model. Although we believe that the two conditions were designed
with a clear difference in game pace, resulting in high time pressure
in the experimental group, one may argue that players cannot
reliably report on scenario-wide metrics only at the end of the
experiment. While we agree with this statement and believe that a
periodical in-game self-report mechanismwould yield more reliable
results, this was not feasible using the Mayor game’s engine.

Lastly, players reported feeling pressured by time during the con-
trol (no time pressure) condition, which may lead to the assumption
that the baseline scenario duration (15 minutes) already induced
a sense of time pressure to the players. As a consequence, both
experimental conditions may have been perceived as “high time
pressure” by the participants. We believe that a further increase in
the difference of time duration between the two conditions may
have had a larger impact on the variety of players’ stress responses.

6 CONCLUSION
In this study, we collected physiological sensor, in-game and self
report data from players during a crisis management scenario game
in order to implement models of player behaviour. Our goal was to
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investigate whether such models can be accurate enough to detect
players’ physiological and in-game responses to time pressure. In
the long term, accurate models may enable the development of
realistic personalised crisis management training scenarios, adapted
to the individual player through stress level manipulation.

To that end, we ran a classification task: we divided participants
in two groups, where participants in the control group played a
baseline game, while participants in the experimental group were
exposed to artificial stress through time pressure. Subjective mea-
sures of players’ experienced stress levels were collected through
post-game self-reports. We trained models aiming to describe play-
ers’ physiological and in-game responses to increased time pressure,
and implemented a random forest classifier in order to predict the
experimental condition. Three separate feature sets were used for
classification; a game-only feature set, a physiological sensor fea-
ture set, and a combination of both feature sets.

Results show that the two experimental conditions were not
perceived as significantly different regaring induced stress levels,
as reflected in players’ self-reports. However, the induction of stress
through time pressure had an impact on physiological measure-
ments, and mostly, in-game behaviour. We were able to predict
the current experimental condition with 67.9% accuracy using a
random forest model trained on the physiological sensor feature set,
while achieving 84.5% accuracy when using the in-game feature set.
A model trained using a union of the sensor and in-game feature
sets, yielded 75% accuracy. This drop in accuracy may be caused
by the random nature of the model’s algorithm, where an increase
in the number of features can decrease the probability of impor-
tant features being selected in each iteration. Adding self-report
variables to the feature set did not improve classification accuracy.

In conclusion, through an applied crisis management game, we
are able to implement accurate predictive models of player be-
haviour under the effects of time pressure. These results can be
employed in future studies in order to implement personalised crisis
management training scenarios.
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