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ABSTRACT
Frustration is a key concept in retaining a player interest in both
commercial and applied games. In a HCI context, frustration is often
seen as a purely negative phenomenon. However, for games to be
interesting some amount of frustrating has to be present. As such,
dynamically adjusting game elements to ensure optimal frustration
levels can be a valuable way to increase player retention. A first
step towards such a system is an accurate classifier of frustration.
To date, most attempts at frustration classification use models that
are relatively hard for a human to understand. In this paper an
attempt will be made at creating an explainable predictor of player
frustration. To accomplish this, the frustration-aggression theory
was used to identify a number of key components that determine
the severity of a frustrated response. 135 participants were asked
to play a series of Pac-Man levels while being asked about the frus-
tration components. Gameplay features, participant behaviour and
participant responses were gathered and used as a dataset to train
a number of random forest classifiers. The classifiers were trained
to predict player frustration, with accuracy ranging from 66.3% to
83.1% depending on the amount of frustration classes used. Accu-
racy dropped significantly when excluding participant responses
on frustration component questions from the dataset. Furthermore,
feature importance analysis revealed the overwhelming importance
of the Repeated Failures component, as well as the relatively low
importance of all in-game variables. These results suggest that the
currently used variable set might not accurately represent the com-
ponents of frustration. A possible avenue for future research could
be the discovery of accurate metrics for these internal component
perceptions.

CCS CONCEPTS
•Human-centered computing→ User centered design; User
models; • Computing methodologies → Classification and re-
gression trees.
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1 INTRODUCTION
Digital games are one of the largest modern entertainment formats
[24]. An estimated 42% of adults play video games on a weekly basis
[9], with those numbers continuing to rise in recent years. Further-
more, game industry revenue continues to reach new heights, reach-
ing a record of 152.1 billion dollars in global revenue in 2019[20].
Games sell because they appeal in some way to their players. To
achieve economic success it is often a good idea to attract a large
variety of individuals as to maximize the potential buyer base. How-
ever, video games are currently designed with a model of an in-
tended player group in mind which corresponds to the designer’s
idea of how a player will interact, respond and adapt to their design.
It is inherently difficult to design for such a large number of players
due to the individual variance present in this group. In an attempt
to combat this, some games have started to implement dynamic
systems that respond to player behaviour to provide a more tailored
user experience. To achieve this, player modelling is used to create
computational representations of players that are generated based
on player input. These models are then used to predict various
internal states that influence the user experience, such as perceived
fun, challenge and frustration.

Of these factors, frustration is one of the most interesting. In
psychological and human-computer interaction theory, frustration
is often seen as a purely negative phenomenon. However, in video
games some amount of frustration might be necessary. A game
without obstacles that generate frustration tends to be boring and
low difficulty can be as much of a reason for disinterest as one that
is too high. An explanation for this might be found in Flow theory,
specifically the GameFlow model [25]. This model introduces the
state of Flow [11], which is an enjoyable experience that can arise
when certain conditions are met. The most important of those
conditions being a delicate balance between challenge and personal
skill level [15].

It might thus be useful to model a player’s frustration level if the
goal is to dynamically alter a game to influence this frustration level
for optimal enjoyment. In this paper an attempt will be made at
modelling player frustration in the game of Pac-Man. Section 2 will
cover previous research, known issues of frustration, Flow theory
and player modelling. This section will end with a description of
the contribution of this paper. Section 3 will describe the testbed
game, participants, procedure and model choice. Sections 4 will
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describe the results of statistical testing and section 5 will analyze
and discuss the findings.

2 BACKGROUND AND CONTEXT
2.1 Frustration
To be able to make any model of frustration a definition of frus-
tration has to be given first. There does not seem to be any over-
arching definition in psychological literature that is used in all
contexts. Instead, a distinction is made between external conditions
(‘a’ frustration) [7] and an emotion that exists within an organism
in reaction to outside events [2].

The Frustration-Aggression hypothesis[13] provides a useful
definition of frustration in an human-computer interaction context.
Dollard and his colleagues defined a frustration as ‘an interference
with the occurrence of an instigated goal-response at its proper time in
the behavior sequence’[13]. In this theory, a frustration is always a
block to a certain goal. It is useful to explain the individual parts of
this definition in more detail to get a full understanding of what the
authors meant. For something to be classified as a frustration, two
aspects have to be present. First, an individual needs to have a goal.
Without a goal, nothing can be impeded and thus no frustration can
be present[7]. Secondly, the individual needs to make anticipatory
goal-enjoying responses[7]. What is meant by this is that it is not
enough for an individual to just have a goal, but some type of
satisfaction derived from attaining that goal needs to be anticipated.
This satisfaction might be extrinsic or intrinsic in nature and can be
anything from autotelic pleasure to monetary rewards[7]. In this,
Dollard and his colleagues differ from his predecessors. He does not
consider just deprivation of a reward as a frustration. It becomes a
frustration only when this deprivation is of an anticipated reward
due to thwarting of a goal for which the individual was genuinely
motivated.

According to the original Frustration-Aggression hypothesis,
aggression follows frustration, hence the name. There are several
factors in this process that influence the strength of this aggres-
sive response. Berkowitz[13] identified three main aspects. First,
the extent to which an individual expected satisfaction from the
attainment of the goal. The stronger the anticipated the reward,
the stronger the aggressive response. Secondly, the extent to which
the goal was blocked, with limited goal-reaching reducing the ag-
gressive response. Finally, the number of in-sequence frustrated
responses. Here, frustrating events will becomemore frustrating the
more they are repeated within a given time frame. Since frustration
generates aggression, it makes sense that the factors influencing
the extent of the aggressive response are all facets determining the
‘success’ and satisfaction of goal attainment. Since these factors
determine the presence and severity of the frustrations.

Later research revised this hypothesis to accommodate new re-
search. While the general idea of the hypothesis was validated
([7] [19], for an overview of empirical evidence), it was found that
frustrations only give rise to aggressive responses to the degree
that they generate negative affect [5][6]. In this reformulation, frus-
trations are seen as aversive events that produce negative affect,
with the extent of the negative affect determining the appropri-
ate level of aggressive response. Negative affect is defined as "any
feeling that people typically seek to lessen or eliminate" [7]. This is

typically seen as the feeling of frustration or anger. Thus, the previ-
ously mentioned factors that determine the height of the aggressive
response do so because of their negative affect generating traits.
Furthermore, this reformulation attempts to incorporate thought
processes into the factors determining the strength of the response.
By doing this, Berkowitz[7] added three factors to the mediating
aspects formulated by Dollard[13]. Firstly, the legitimacy of the
block, where an obstacle that is perceived as being there for le-
gitimate reasons causing less aggression than one that is seen as
illegitimate. As an example, one could look at a failing teammate
dragging the performance of the entire team down. If this team-
mate is failing for a perceived legitimate reason, such as a sudden
illness, it would inhibit the frustrated response in comparison to
a perceived illegitimate reason, such as laziness. Secondly, there
is the deliberation factor, where an act that is seen as deliberately
blocking someone’s progress towards a goal causes more aggres-
sion than a block that is perceived as accidental. One gets less
frustrated having to drive slowly and perhaps not reaching your
destination in time if it is raining and the road is slippery compared
to someone purposefully blocking the road just to spite you. Lastly,
the anticipation of failure mediates the strength of the response,
with unanticipated failures contributing significantly more to the
aggressive response than anticipated ones. Researchers found that
this sudden failure has a resemblance to punishment [14], which
generates a larger amount of negative affect and thus corresponds
to a larger aggressive response.

The reformulated frustration-aggression thus gives us 6 com-
ponents that determine the extent of negative affect generation,
which in turn determines the measure of the aggressive response.
These 6 components are respectively; Personal Satisfaction, (par-
tial) Goal Completion, Repeated Failures, Block Legitimacy, Block
Deliberateness and Block Anticipatability. These 6 components can
thus be used as a guideline to evaluate the frustration a feature will
cause.

So far frustration has been described as a purely harmful phe-
nomenon that causes negative emotions and many problems. In
a human-computer interaction context this is often the dominant
viewpoint. The goal of most devices is to complete tasks, and any-
thing getting in the way of efficient task completion should there-
fore be reduced as much as possible. However, for games this might
not be the case. Most games contain a sequence of obstacles that
block a player’s progression and it can be argued that the whole
point of most games is overcoming these obstacles. Even games that
most players fail in time and time again and most would describe
parts of the experience as highly frustrating (such as the Dark Souls
series, famed for its difficulty) are also enjoyed by many players. On
the other hand, games lacking in difficulty and containing nearly
no obstacles are often seen as ‘boring’ if there are no other aspects
present to keep a player entertained. Clearly, there is a balancing
act of frustration, skill and challenge that is needed to keep a player
engaged.

2.2 Flow Theory
An often used explanation for this balancing act is found in Flow
Theory [11]. Flow Theory states that there is an experiential state
(called ‘Flow’) in which a person is completely absorbed by the
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activity one is partaking in. In this state, actions ‘flow’ from one
to the other without need for conscious intervention on the user’s
part. This flow experience is defined by five elements. The merging
of action and awareness, the centering of attention, the loss of the
sense of self, the feeling of control of action and environment and
the demand for action. This phenomenon is highly enjoyable for
most and is often observed in instances of play, but has also been
reported surfacing during work-, creative- or religious activities
[11].

However, a state of flow is not always experienced whenever any-
one engages in these activities. According to Csikszentmihalyi[11]
flow emerges when a player is able to focus on a game and the game
presents obstacles that stay challenging enough throughout the
learning process. Indeed there is some evidence that this seems to
be the case [16]. This suggests that the ratio of challenging obstacles
and skill might be the key to providing an enjoyable experience.

2.3 Player Modelling
It is useful to model a player’s internal frustration state to be able
to maintain an optimal level of frustration for a given player as
to facilitate a flow experience. This can be done by player mod-
elling, which aims to detect and predict cognitive, affective and
behavioural patterns by using a computational model[28]. This
is usually done through some form of analysis of the player’s be-
haviour in a given game. In this regard it is different from player
profiling, which attempts to place a player into a typology based on
static information[28]. In contrast, player modelling is based on dy-
namic information acquired during gameplay. This definition is not
universal though as other researchers state that player modelling
refers to modelling external player behaviour while player profiling
attempts to model internal player states[26]. For the purposes of
this paper, Yannakakis’[28] definition will be referred to whenever
player modelling is mentioned.

Some attempts at frustration modelling have already been made.
Pedersen, Togelius and Yannakakis [21] attempted to train a neural
network that used level design parameters and player behaviour to
predict three reported emotions, including frustration. They found
that even a relatively simple single-neuron network resulted in a
high accuracy prediction of frustration labels (88,66%). However,
other emotions were harder to predict.

Yu and Trawick [29] expanded on this and tried to build models
that attempted to predict frustration or boredom labels from a set
of in-game aspects and the same characteristics of player behaviour
as Pedersen et al’s[21] research. They categorized players based on
input from a questionnaire and in-game behaviours using a soft
clustering algorithm. Two models were then built per category, one
of player frustration and one of player boredom. These models were
based on player feedback and gameplay features, which includes
both player behaviour as well as controllable features. A ranking
algorithm was used to predict the final label given to a specific level.
Their frustration prediction accuracy was 87.5%.

2.4 Model Evaluation
Player modelling needs some way of checking the goodness of fit of
their model. Usually this is done by comparing model predictions to
some form of real world data. Most player models attempt to model

an internal state, such as frustration or enjoyment, which is often
hard to directly measure. This means that alternative measures
need to be used as an indication of the presence of the internal
state. Three types of data are commonly used to infer this presence.
The most frequently used measures of internal states are physical
indicators, self-report and behavioural cues.

Physical measures are things like skin conductivity [27], mouse
pressure [18] and facial expressions [4]. These indicators can be
used to infer certain internal states [17][10][12], although the ex-
tent to which these signals truly indicate a certain emotional state
is debated. For example, skin conductivity will change with the
amount of perspiration or the tightening of muscles. Both of these
factors will be present when playing a high intensity game, which
will lead to a prediction of higher arousal. However, the higher skin
conductivity might be attributed solely to these physical aspects
instead of the internal emotional state.

In contrast, self-reports are generally valid in measuring the
desired internal state. However, they might be inconsistent and
inaccurate [29]. Common problems include inaccurate ranking (e.g:
a player could rank the frustration of two very similar levels as
differently frustrating depending on what he experiences directly
before. A phenomenon known as anchoring) and inconsistent rank-
ing (e.g: a frustration rating of 3 might mean something different to
player A than it does to player B). These deficiencies can be reduced
through data manipulation, such as the use of a ranking algorithm
in Yu and Trawick[29].

Finally, behavioural cues can often be used to predict player
characteristics. Shaker, Yannakakis & Togelius [23] used in-game
behaviour such as his movement behaviour or jumping frequency to
change the parameters of automatically generated levels to optimize
fun, challenge and frustration. A large problem with behavioural
cues is that, much like physical measures, these cues often indicate
the presence of a certain internal state but are no direct measures
of this state. Therefore you need a good theory on what type of be-
haviours indicate which state. Alternatively, as Shaker, Yannakakis
& Togelius[23] have done, you can see which statistical correlations
exist between the data and self-reported internal states.

2.5 Contributions of this paper
Some progress towards an accurate predictor of player frustration
has been made. However, most attempts to date have used model-
free approaches with a fairly low explainability. This limits the
usefulness of such a tool, as game designers would want to know
which variables to tweak to influence the amount of experienced
frustration. Additionally, most approaches use no assumptions on
the origin of frustration in their prediction. Using pre-existing
theories about frustration might narrow the search for influential
variables. These factors are so far relatively unexplored.

Thus, in this paper an attempt will be made at creating an ex-
plainable predictor of player frustration using a pre-existing theory
of frustration. Data will be collected in the game Pac-Man. Data
collected from the game consisted of 3 categories. Static gameplay
features (ghost speed, lives, etc), participant behaviour (number
of pellets collected, number of ghosts eaten, etc) and participant
responses on a questionnaire with a number of questions related
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to frustration and the 6 components as defined in the frustration-
aggression hypothesis. By combining self-report and behavioural
measures, higher performance might be achieved. Physical mea-
sures were neglected due to the perceived difficulty at obtaining
them in real-world scenarios and due to the ambiguity of their
results. Variants of the resulting dataset were used as input for
a number of random forest classifier models. The random forest
learning method was used because of its relative explainability and
the ability to easily generate variable importances, which might
give an insight into the causes of frustration. In the final step, these
models were tested and evaluated as predictors of frustration.

3 METHODS
3.1 Overview
Randomly selected participants played 5 levels of a custom built,
modified Pac-Man game online. Various variables relating to game-
play features, in-game participant behaviour and participant re-
sponse were collected during the experiment to serve as a founda-
tion for the frustration classifier. All these factors will be illustrated
in greater detail below.

3.2 Testbed Game
Pac-Manwas chosen as the testbed game to collect data from. Game-
play in Pac-Man consists of the player moving Pac-Man in a tile-
based 2d maze, trying to collect all the pellets in the level. Pac-Man
can only move up, down, left or right. The player is victorious if
Pac-Man collects all pellets in a level. There are 4 ghosts in the maze
that serve as the player’s obstacles. If Pac-Man touches a ghost, the
player loses a life and resets the position of both Pac-Man and all
the ghosts, but not the collected pellets. Upon losing 3 lives, the
player is defeated and the level ends.

At the start of a level only the red ghost (Blinky) is active in
the maze, with the rest of the ghosts trapped in the ghost house.
However, the other 3 ghosts are released during a level at set time
intervals. The ghosts all have slightly different behavioural pat-
terns, determined by their target tile. For a full overview of ghost
pathfinding mechanics see the Pac-Man Dossier [22]

Pac-Man was chosen as a testbed because of its relative familiar-
ity to most participants, and its simplicity in both rules and control.
This made it more likely that every participant was able to play and
understand the game, reducing the influence of at-game frustration
in the measurements, which was not being measured. This kept the
focus on the in-game frustrations that served as data for the model.
Furthermore, Pac-Man was relatively easy to recreate, allowing
total control over every aspect of the experiment.

3.3 Participants
Since the experiment did not focus on any particular population
group, participants were recruited using random selection from
various websites, with the bulk of the participants coming from
the Utrecht University paid participants Facebook page. As such,
the participant population skewed towards college students that
participated for student credit.

168 Participants were randomly selected in this way. After fil-
tering out those that only partially completed the experiment 135
participants were left with a mean age of 23.7. Of these participants,

59 were male (mean age: 25.5), and 76 were female (mean age: 22.4).
Zero individuals chose ‘other’ or preferred not to state their gender.

Finally, participants were asked how many hours they spent
playing video games in an average week. 54 participants reported
almost never playing videogames, 44 reported between 1-5 hours
of use per week, 8 reported between 6-10 hours of use per week, 11
reported between 11-15 hours of use per week, 7 reported between
16-20 hours of use and 11 reported a usage of 20+ hours every week.

3.4 Materials
The Pac-Man implementation was a custom-build version of Pac-
Man developed by the researcher in Unity 2019.3 specfically for this
research. The playable build was a webGL build deployed to a pri-
vate server and thus playable in the browser. The Pac-Man build was
identical to the traditional Pac-Man game, with minor differences.
The ‘ghost house’ mechanic where ghosts go after they are eaten to
reform was removed, replaced with a mechanic where the ghosts
would flee to the other side of the map. This was done to ensure
a consistent time where ghosts were frightened. Some gameplay
elements were randomized to research the effect of these gameplay
features on frustration levels. The aspects that varied between levels
consisted of: Ghost Speed (Range: 50%-110% of Pac-Man’s speed),
Powerpellet number (Ranging between 0 and 8), Powerpellet loca-
tion (8 different locations), Powerpellet Frightened time (between
4-10 seconds), Scattertime (Between 4-12 seconds) and Chasetime
(Between 10-30 seconds). Although not originally planned as an
online experiment, the experiment want administered online to
conform to the Covid-19 pandemic quarantine regulations present
on the university at time of writing. As such, devices on which
participants played varied, although all were regular computers as
the experiment did not function on mobile devices.

3.5 Procedure
After recruitment, participants followed a link to the website on
which the experiment was playable. The participants were greeted
with a main menu screen were they could either start the exper-
iment, or quit. After starting, participants were briefly informed
of the procedure and purpose of the research, after which they
could sign a consent form. The participants were then shown a
brief instruction on the objective and controls of the Pac-Man game,
to make sure every participant knew how to play. They then played
5 levels of the modified Pac-Man game.

While playing, a survey would pop up at set time intervals. This
survey would pause the game and ask the participant 6 questions.
The participant would be asked about his overall experienced frus-
tration level in the last 30 second gameplay segment. Furthermore,
the participant was asked about the absence or presence of 5 (of
the 6) components of frustration. It was judged that Personal Sat-
isfaction was unable to be measured in a simple questionnaire. It
was thus dropped from the components of frustration and it was
assumed that participants had similar amounts of motivation.

Experiences of frustration components as well as total amounts
of frustration were gathered through simple 1-question question-
naires per component. These questions directly asked about the
presence or absence of a certain component in the last gameplay
segment. For example, the Legitimacy component question was;
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’Did the last gameplay segment feel Legitimate?’. For the compo-
nents, a clarification was given below the given on the meaning
of these components terms. For example, the clarification for the
Legitimacy question was; ’Clarification: Legitimate gameplay feels
reasonable, proper and fair, illegimate gameplay does not.’ These
1-question questionnaires were chosen over validated question bat-
teries due to the volume of labels needed for the random forest
models. Ideally, we would have a frustration label for every second
of gameplay data. Realistically however, this is not viable since
a player getting interrupted every second leads to an unplayable
game and participants’ frustration will not fluctuate from moment
to moment. Thus a 30 second interval between questionnaires and a
simple questionnaire was chosen as a tradeoff between the optimal
amount of labels needed for the model to function and internal
validity.

Participants could answer the questions by clicking one of five
buttons that formed a Likert scale. The program would then stay
paused for 3 more seconds to allow the player time to prepare be-
fore resuming play. These surveys popped up every 30 seconds and
at the end of each level. 5 Levels were played this way by each
participant. After these 5 levels, a demographics survey would be
administered, as well as an opportunity to report bugs and glitches.
Finally, the participants were thanked and an email-address was
presented in case the participants had any more unanswered ques-
tions. Screenshots of every screen the participant encountered in
order can be found online at [3].

3.6 Data Collection
A mixture of behavioural measures and self-report was chosen as
indicators of a frustrated state. Physical measures were not used
due to the ambiguity of their results. Furthermore, behavioural
measures and self-report are data that a game designer has easier
access to, increasing real world viability of the system. 41 variables
were measured during play, dividable into 2 categories; gameplay
variables and participant response data. Gameplay variables were
measured every second and involved either controllable gameplay
features (such as ghost speed) or in-game participant behaviour
(such as number of pellets collected). These variables were chosen
due to their perceived effect on the 5 components of frustration
based on expert opinion. The gameplay variables can be classified
into 6 categories: Time, Location, Progress, Deaths, GhostBehaviour
and Miscellaneous.
Time: The time of player death; The time it took to complete a
level; The current time in the round; The percentage of time spent
standing still.
Location: Pac-man’s location (in X and Y coordinates); Blinky’s
Location, Inky’s Location, Pinky’s Location and Clyde’s Location;
The location of deaths; The distance to all ghosts; the distance to
the nearest ghost.
Progress: The current level; The number of pellets collected and
powerpellets collected; the number of ghosts eaten.
Deaths: The number of deaths; The number of kills of each respec-
tive ghost; The number of lives remaining.
GhostBehaviour: The time ghosts are in scattermode; The num-
ber of ghosts in chase behaviour; The time ghosts are in chasemode;
The time ghosts are in frightened mode; The speed of all ghosts.

Miscellaneous: The number of teleporters used; the number of
functionally useless inputs.
Furthermore, the participant’s responses on the questionnaire were
added to the data after the 30 second mark. This concerned 6 vari-
ables related to frustration or frustration components, namely; Le-
gitimacyScore, DeliberatenessScore, AnticipationScore, Repeated-
Failures, (partial) Goal Completion and TotalFrustration. Appending
these scores to the previous data created data blocks of 30 seconds
of gameplay data followed by participant labels. These data blocks
would serve as the input for the random forest model.

3.7 The Random Forest Classifier
To predict frustration, a function has to be approximated between
gameplay features, participant behaviour and participant response.
A random forest classifier was judged to be a good fit for this prob-
lem. A random forest classifier is a method of ensemble-learning
where a number of decision trees are constructed based on a dataset
that all vote on an outcome. The outcomes in this case being the
5 frustration classes. In this way it can classify frustration from
a number of variables. For a full overview of the workings of a
random forest, see (Breiman, 2001).

There were a number of reasons for this choice. Firstly, a random
forest has relatively robust ways of calculating feature importance.
This could give some insight into not only when a participant is frus-
trated but also why. This increases the explainability of the model
and makes it more useful as input for game designers. Secondly,
it allows for a large array of input variables, making it scalable to
more complicated games. Finally, the mapping between gameplay
variables and frustration is probably non-linear, which a random
forest can handle.

3.8 Data Processing
After data was collected, some processing was required to make
the data suitable for use with the random forest model. For most
variables, averages were calculated for a given gameplay interval.
This was done to variables for which an average was more repre-
sentative for that given gameplay interval such as GhostDistance
or NumberOfGhostsOnChaseBehaviour (e.g: an average distance
to all ghosts in the past 30 seconds is a better indication how close
the ghosts were in in comparison to just the last value).

Other variables (Deaths, Kills etc) were added to a total for a
given gameplay interval. This was done so a block of data accu-
rately reflects what happened in a certain gameplay interval. Due
to a difference between the locally tested Pac-Man build and the
deployed online build, the Useless_Inputs variable was not prop-
erly tracked with the deployed online build of the experiment and
reported only zeroes. This variable was therefore removed from
the dataset.

The dataset was then divided into a training and testing set,
with a 80/20 train/test split percentage. Because the classes that
are aimed to be predicted were imbalanced, a stratification process
was used to make sure both the training and test datasets contain
examples of all the classes in the same proportion as the original
dataset.
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Table 1: Overview of participant responses

Component Mean Standard Deviation
Frustration 2.22 1.27
Legitimacy 3.62 1.16
Deliberateness 2.49 1.28
Repeated Failures 2.10 1.19
Anticipation 3.38 1.22
Goal Completion 3.50 1.26

Table 2: Frequency of frustration class responses

Class Frequency
1 568
2 355
3 253
4 177
5 98

4 RESULTS
4.1 Participant Reponse Overview
An overview of participant responses on the questionnaire ques-
tions can be found in table 1. On average we see means between
2.22 and 3.62. The standard deviation of all components is similar,
ranging from 1.16 to 1.28. Furthermore, there was a significant effect
of amount of hours spent playing video games as determined by
a 1-way ANOVA (F(5) = 8.011, p < 0.001). Participants that played
more reported less frustration than those that barely played video
games, although the effect was very small.

4.2 Frequency of Frustration Classes
As previously mentioned, participants could respond to any frus-
tration of frustration component question with an answer between
1 and 5. With regards to responses in the frustration category, an
unbalance between frustration classes can be seen in figure 3, with
a clear trend downwards. Only 91 instances of maximum frustra-
tion (class 5) out of 1451 total observations were seen, compared
to 568 observations of class 1. To illustrate this difference, class
1 accounted for over 40% of all observations while class 5 only
accounted for 6.3%.

4.3 The Random Forest Classifier
A number of random forest models were tried to predict user frus-
tration, starting with a default Random Forest Classifier. To see
how this model would perform, the default set of hyperparame-
ters was selected as a first trial. This model was trained on two
versions of the dataset. One version of the dataset contained par-
ticipant responses on each of the five components of frustration,
while they were absent in the other version. This was done to see if
user perception of components captured something that gameplay
variables could not. The models using component response data
will be known as the Component Response Data Classifier (CRD
Classifier), while those that do not use component response data
will be known as noCRD Classifier models.

4.4 Random Forest Classifier

Table 3: Hyperparameters

Hyperparameter Value
N-estimators 1600
criterion Gini
max_depth 10
min_Samples_Split 12
max_features 18
max_samples 2

The random forest classifier was trained on the two datasets. For
these two datasets, four metrics of performance were calculated.
These metrics are Accuracy, Precision, Recall and the F1-score.
Accuracy refers to the percentage of correct predictions. Precision
is the number of correctly identified members of a class, divided by
the total amount of class predictions. Recall refers to the number
of members of a certain class that the model identified divided by
total members. The F1 score is a measure of both of the previous
metrics combined. Additionally, the support for each category was
tracked. Finally, a confusion matrix was produced to provide further
insight into where the model might make incorrect statements.
Some overfitting was found thus randomized search cross validated
was used to tune the hyperparameters. The used hyperparameters
can be found in table 3.

4.5 CRD Classifier Performance
Generally, we see an accuracy with an average of 66.3% on the test
set. Training set accuracy was reduced to 87.1%, which is closer
to test set accuracy. When looking closer at the data in table 4, a
split can be seen with classes in the middle of the spectrum. The
model performs best on the first class, with decreasing performance
seen on the higher classes. Recall seems to gradually decline on the
higher classes while Precision dips on class 3 and then climbs up
again. The model has the greatest difficulty recalling class 4, and
has the greatest difficulty overall with class 3.

The decrease in performance manifests itself in two ways, as
seen in figure 1 and table 3. Firstly, the model tends to make addi-
tional mistakes the further down the classes you go. Secondly, the
magnitude of error (e.g: the distance between predicted class and
true class) increases as well. The only exception is frustration class
5, which the model relatively frequently (55%) recalls correctly, but
also relatively frequently predicts to be in class 1 (20% of the time),

Table 4: CRD classification report

Class Precision Recall F1-Score Support
1 0.78 0.89 0.83 114
2 0.59 0.62 0.60 71
3 0.48 0.47 0.48 51
4 0.67 0.34 0.45 35
5 0.65 0.55 0.59 20

Accuracy 66.3%
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Table 5: noCRD Classifier report

Class Precision Recall F1-Score Support
1 0.58 0.80 0.67 114
2 0.41 0.41 0.41 71
3 0.26 0.24 0.25 51
4 0.46 0.17 0.25 35
5 0.40 0.10 0.16 20

Accuracy 48.1%

which is the largest error the model can make. Errors this large are
rare while predicting other classes.

4.6 noCRD Classifier Performance
Performance without the component response data is significantly
reduced compared to the CRD classifier, with an average accuracy
of 48.1%. As seen in table 5 and figure 2, we see a similar reduction
in Recall as with the previous model the further you get from class
1 and a similar dip in Precision around class 3. In the previous
model this performance drop was mostly seen in the middle classes.
However, without participant response, this drop carries over to
class 5, which is seen especially in the Recall rate. Furthermore, the
model seems to be biased to incorrectly predict observations to be
in class 1.

confusion matrix cropped.png

Figure 1: CRD Classifier confusion matrix trained on partic-
ipant responses and gameplay variables

Figure 2: noCRD Classifier confusion matrix trained on just
gameplay variables.

Table 6: Classifier accuracies with 3 frustration classes

Model Accuracy
3-Cat AMS Classifier 81.4%
3-Cat AES Classifier 73.5%

4.7 Aggregated Categories
Since model performance varies so much between classes and ob-
servations of higher frustration classes are limited, two models
were trained on a dataset with aggregated frustration categories.
Participant responses of total frustration were aggregated into three
categories, low, middle and high. This was done in two different
ways. First, classes 2, 3 and 4 were aggregated into a single class, be-
coming the new ’middle’ class (new class 2). Meanwhile, the classes
on the edge (classes 1 and 5) became classes ’low’ and ’high’ (new
class 1 and 3) respectively. This aggregated dataset will henceforth
be known as the Aggregated Middle Set (AMS). Alternatively, a
second dataset was created where the first and second class were
aggregated, becoming the ‘low’ class. In this dataset the fourth and
fifth class were aggregated to become the new ‘high’ class. This
aggregated dataset will be known as the Aggregated Ends Set (AES).
The classifier was retrained on this new dataset, with the results
shown in table 6 and figures 3 and 4.

As can be expected, reducing the categories from five down
to three significantly increases the performance of the classifier
(Accuracies between 73.5% and 81.4% compared to 66.3%) with the
AMS trained classifier leading to a better performance than the
AES trained one. Note that the AES classifier not only performs
worse than the AMS classifier, but also seems to have a bias towards
category 1, which is the largest category by far. Even more so since
the Aggregated Ends Set now combines the largest 2 classes of
the previous dataset. This could artificially inflate its accuracy as
always predicting category 1 would result in a high accuracy but
questionable usefulness due to the skewedness of the classes.

Figure 3: AMS Classifier confusion matrix trained on the ag-
gregated middle dataset.

4.8 Frustration Component Prediction
Finally, a random forest classifier was built to try and predict the
five components of frustration. In the same manner as the previous
random forest models, 2 versions of dataset were used to train these
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Figure 4: AES Classifier confusion matrix trained on the ag-
gregated ends dataset.

models. One without component response data (noCRD) and one
including component response data (CRD). These models attempted
to predict 5 classes of the frustration components without class
aggregation as seen in the AES and AMS Classifiers. This was only
mildly succesful, with accuracies ranging from 50.2% on the low
end to 60.1% on the high end of the spectrum with component data.
Similar to the noCRD classifiers, performance is significantly worse
without component data, ranging from 31.6% to 43.3%.

4.9 Feature Importance
To see which feature might best predict frustration, feature im-
portance analysis was performed. The standard metric for feature
importance is Mean Decrease in Impurity (MDI). Mean Decrease in
Impurity is the average of a feature’s total decrease in node impurity,
weighted by the proportion of samples reaching that node in each
individual decision tree in the random forest. For a full overview
of the math behind this metric, see Breiman (2001). However, MDI
is computed on the training set. As we have seen, the model tends
to learn the entire training set, and perform worse on the test set.
Even after parameter tuning some degree of overfitting is present.
MDI therefore might give a biased view of variable importance.

To combat this, Permutation Importance (PI) per feature was
used as a metric. A PI function randomly shuffles the values of a
certain feature, therefore breaking the relationship between feature
and target frustration label. This drops a model’s accuracy score
and thus indicates the importance of that variable for the model’s
performance. For a full overview of the math behind this function,
see Breiman (2001).

Feature importance can be seen in figure 5. Four of the five
components of frustration rank relatively high (top 10) in feature
importance, with the most important one being the RepeatedFail-
ures score. This feature is the score participants gave themselves
on how often they failed in the last gameplay segment.

Interestingly enough, a number of features that determine dif-
ficulty such as GhostSpeed, FrightenedTime and Scattertime (PI
only) are near the bottom of the importance list. One would think
increasing the difficulty would be strongly linked to failure rate and
thus increase the frequency of frustrating events. However, this
data indicates otherwise.

5 DISCUSSION
5.1 Can frustration be predicted?
This research set out to find an explainable way to predict user
frustration from game features, user behaviour and participant
response. To this end, a number of random forest models were
constructed and trained on a dataset consisting of controllable
gameplay features, user behaviour and user response data on a
number of questions regarding frustration.

The current approach of predicting frustration was mildly suc-
cessful. The tuned CRD classifier reached a 66.3% accuracy predict-
ing 5 classes and 81.4% accuracy when predicting 3 classes. These
accuracies are significantly higher than chance (20% and 33% re-
spectively, assuming equal class distributions). Furthermore, most
errors fall within 1 class difference and extreme errors are rare,
with the exception of the highest frustration class. This means the
model usually predicts a value close enough to give a useful indi-
cation of frustration state. While still far from ideal, prediction of
user frustration with a random forest model seems to have some
potential.

The tuned CRD classifier seems to have the least success with
the ambiguous classes in the middle of the frustration spectrum.
These classes might be hard to predict because what causes smaller
amounts of frustration differs greatly, while very frustrating events
might be more uniformly experienced. The idea that individuals
experience frustration differently has some basis in the literature,
as the 6th component of the frustration-aggression hypothesis,
Personal Satisfaction, is an internal factor that differs from person
to person. The idea of a universally frustrating experience is less
pronounced in the literature. However, seeing the importance of the

test set cropped.png

Figure 5: Permutation Importances calculated on the test set
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RepeatedFailures component it is plausible that repeatedly failing
is universally seen as very frustrating.

However, model performance is usually mostly dependent on
quality and quantity of available data. That can be seen in this
model as well, as model performance decreases with the amount of
data available. Class 1 accounts for nearly 40% of all observations
with class 2 accounting for another 24%. Coincidentally, these are
the classes where we see the best performance. On the other side of
the spectrum, class 4 only accounts for 12% of the observations. This
might force the model to learn patterns from a very limited amount
of observations, and be tested on a small set which is vulnerable to
outliers. This is especially true with regards to the noisiness of the
signal that is to be predicted.

The only exception to this seems to be class 5, the highest frus-
tration class. This class only accounts for 6.3% of all observations
However, it might be that there are very strong indicators that
serve as a sort of ‘cut-off’ point of frustration. For example, some-
one dying 3 times within 30 seconds might always experience high
frustration as these deaths compound the amount of felt frustration
as seen in the importance of the RepeatedFailures feature. These
indicators will then be a very good predictor of class 5, which the
model can use. These predictors might not exist for the more am-
biguous classes, as what causes small amounts of frustration might
vary more between subjects than what causes large amounts of
frustration. This again harkens back to the idea of a universally
frustrating experience.

Additionally, the performance of both models heavily depends
on the user response to the frustration component questions. Per-
formance drop significantly if you exclude these datapoints from
the learning process. Furthermore, the classifier starts to gain a
heavy bias towards predicting class 1, which leads to an overes-
timation of actual accuracy as class 1 is the largest class. This is
unfortunate, since one of the aims of this research was to see if it
was possible to predict user frustration without prompting the user.
It seems that the used method, with the used variables, is unsuitable
for predicting user frustration from just game data, at least with
the amount of data collected. This might be corrected by finding a
better way to measure frustration than these 30 second segments.
It might be that frustration develops in longer-term interactions
that these segments did not capture. Furthermore, the interruptions
caused by the questionnaire might be a cause of frustration in and
of itself.

5.2 Can this prediction be explained?
Feature importance analysis reveals some interesting findings. Again
we see the importance of the frustration components. Repeated-
Failures is overwhelmingly the most important feature, with De-
liberateness and Legitimacy as second and fourth. This explains
why the model loses much of its predicting power when these
features are dropped out of the training dataset. A random forest
model prediction of the RepeatedFailures component resulted in
a average accuracy (60.1%), with no single feature standing out as
contributing much to performance. This can suggest two things.
One, the current dataset of gameplay features does not contain
the necessary variables to accurately reflect when Repeated Fail-
ures happen in game. Two, it is not necessarily actually repeatedly

failing in game that causes frustration, but just the perception of
repeatedly failing. In the first case, efforts could be made to try to
capture the RepeatedFailures component with a different variable
set. Perhaps one where different types of failure or some sort of
failure similarity metrics are incorporated. In the second case one
should try finding variables that correspond with this mental state,
which might be different from those that common sense would
assume are correlated.

Additionally, the random forest classifiers that predicted frustra-
tion component responses yielded a relatively mediocre accuracy.
The CRD accuracy was slightly lower on 5 class predictions than
the CRD predictions of player frustrations. This slight reduction can
be explained by the relative importance of frustration components.
Since the CRD Frustration Classifier has all components to learn
from, and frustration components are a relatively good predictor of
frustration, the model has a slightly higher accuracy. Components
predictors however have one less component to learn from, and
do not have access to TotalFrustration to compensate, leading to
a slightly worse performance. Additionally, this finding seems to
reinforce the idea that the used variable set does not accurately
reflect when these frustration components are triggered. It seems
different variable sets are needed to explain where the frustration
is coming from.

The tuned classifier has a lower accuracy with participant data
than other methods used by researchers when predicting 5 classes.
For example, Yannakakis et al’s[21] approach based on evolutionary
learning attained a 88.66% accuracy on the frustration dimension.
Kapoor et al[17] used a assessment method based on Gaussian
process classification and Bayesian interference and reached an
accuracy of 79%. However, it must be noted that both these studies
had significantly higher chance conditions so higher accuracies are
to be expected. All in all it seems that the currently used method of
frustration prediction has some merit, but requires further research
to unlock its full potential.

5.3 Conclusion
In conclusion, a study was conducted in which a number of partic-
ipants played variations of Pac-Man. While playing, these partic-
ipants were asked about their experience in relation to five com-
ponents of frustration as mentioned in the frustration-aggression
hypothesis. Gameplay features, participant behaviour and partic-
ipant responses were captured and used as a dataset to train a
number of random forest classifiers. These classifiers were trained
to predict frustration, with results ranging from average (66.3%) to
good (83.1%) accuracy when predicting 5 or 3 frustration classes
respectively.

Accuracy dropped significantly when not incorporating par-
ticipant responses in the dataset. Correlation analysis revealed
significant correlations between all frustration components and
frustration, as well as additional correlations between certain game-
play features and frustration. Feature importance analysis revealed
the influence of the Repeated Failures component, as well as the
relatively low importance of all other gameplay features. These
results suggest that the frustration components can be useful as
an explanation for the cause of frustration. Furthermore, the used
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method of frustration prediction leads to useable models that pre-
dict a near-enough value to be useful. However, efforts need to be
made to find a variable set that captures the frustration components
to predict without prompting the user.

These results are a first step in the direction of a game that
dynamically adjusts to player frustration. Furthermore, the results
can be used to inform researchers to create better models of user
frustration, as well as further the search in what exactly creates a
frustrating game.

5.4 Future Work
There are a number of avenues for future work. Player types can
investigated, to see if there is a relationship between player type
and finding certain variables frustrating. Additionally, more factors
than those described in the frustration-aggression hypothesis can
be incorporated in the model, which could improve prediction ac-
curacy. Once satisfactory accuracy is reached, efforts can be made
at creating an adaptive game A.I that detects and adapts to player
frustration. These advances can then be used to enhance the game-
play experience for users, allowing for greater player retention in
commercial games, and a lower dropout chance in educational ones.
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