
Procedural Zelda: A PCG Environment for Player Experience
Research

Norbert Heijne
University of Amsterdam
norbert.heijne@gmail.com

Sander Bakkes
Tilburg University
s.c.j.bakkes@uvt.nl

ABSTRACT
To contribute to the domain of player experience research, this
paper presents a new PCG environment with a relatively wide ex-
pressive range that builds upon the iconic The Legend of Zelda:
A Link to the Past action-RPG game; it contributes by providing
the openly-available Procedural Zelda environment for gaming re-
search. The paper presents the design goals and design context
of the research environment, and provides a detailed overview
of the procedural capabilities of Procedural Zelda, together with
its capabilities for data logging, to benefit, e.g., player modelling
investigations.

CCS CONCEPTS
•Applied computing→ Computer games; • Software and its
engineering→ Interactive games; • Information systems→
Multimedia content creation; • Human-centered computing →
Human computer interaction (HCI);

KEYWORDS
Zelda, Procedural Content Generation, Player experience research,
Player modelling
ACM Reference format:
Norbert Heijne and Sander Bakkes. 2017. Procedural Zelda: A PCG Envi-
ronment for Player Experience Research. In Proceedings of FDG’17, Hyannis,
MA, USA, August 14-17, 2017, 10 pages.
https://doi.org/10.1145/3102071.3102091

1 INTRODUCTION
An evident benefit of procedural content generation (PCG) – the
algorithmic creation of game content with limited or indirect user
input [26] – is that it can be employed for the automated generation
of game levels. Also, it is interesting to observe that the field has be-
come increasingly more aligned with game research that concerns
player (experience) modelling (e.g., [17, 18, 23, 24]), adaptive game
experiences (e.g., [2, 3, 15, 27, 28]), game analysis (e.g., [8, 9, 11, 20]),
personality analysis (e.g., [4, 5]), mixed-initiative content creation
(e.g., [14, 22]), etc. etc.

A central concept regarding PCG-based game environments for
research, is expressive range. The concept refers to the space of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG’17, August 14-17, 2017, Hyannis, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5319-9/17/08. . . $15.00
https://doi.org/10.1145/3102071.3102091

potential levels that a generator is capable of creating, including
how biased it is towards creating particular kinds of content in
that space [21]. Indeed, the expressive range of a PCG-based game
environment is essential for research that is focused on understand-
ing the links between exhibited in-game behaviour, and factors
such as player personality, self-reported game experience, player
characteristics and preferences, or game literacy. That is, it is desir-
able that procedural techniques can generate a game environment
that allows – and can control for – a wide range of behavioural
possibilities for the players, such that distinct players can interact
with the game environment in their own, unique play style.

As such, to contribute to the domain of player experience re-
search, this paper presents a new PCG environment with relatively
wide expressive range that builds upon the iconic The Legend of
Zelda: A Link to the Past action-RPG game; it contributes by provid-
ing the openly-available Procedural Zelda environment for gaming
research

2 DESIGN GOALS
To enable Procedural Zelda to serve as an environment for player
experience research, it is designed around the following high-level
goals:
(1) Procedural Zelda provides an interactive environment of rela-

tively wide expressive range in which distinct players have the
opportunity to act in their own, unique play style.1

(2) Procedural Zelda provides an investigator with (i) offline control
over important facets of the procedural game design (i.e., before
a game is started), such that a game may be generated that
is tailored to an individual player, and (ii) online control (i.e.,
during gameplay), such that important aspects of the running
game can be adapted / can be (re)generated on the fly.

(3) Procedural Zelda provides data logging capabilities that enable
(i) monitoring (and modelling) of numerous facets of observed
player behaviour, (ii) querying the player for self-reported game
experiences during and after gameplay.
To facilitate these high-level design goals, Procedural Zelda gen-

erates a complete quest that lasts 20 to 60 minutes (depending on
play style) in which the game takes place. It includes a handcrafted
Village with non-player characters (NPCs) who introduce the sto-
ryline of the quest to the player, a Tutorial level, a Shop, numerous
procedurally generated Levels, an adaptive Boss Fight, and a con-
clusion to the quest (this is further detailed in Section 4.1). A wide

1We consider the relatively wide expressive range as resulting from (i) the relative
complexity of Zelda’s gameplay itself, (ii) the generative control over the world gener-
ation (discussed next), and (iii) how versatile the environment is for offering player
behaviour choice. Aside these general observations, a more formal analysis of the
generator’s expressive range is relevant and interesting too, but falls outside of the
scope of the present paper.

https://doi.org/10.1145/3102071.3102091
https://doi.org/10.1145/3102071.3102091

FDG’17, August 14-17, 2017, Hyannis, MA, USA Heijne and Bakkes

Table 1: Overview of game content in Procedural Zelda. A
list of adjustable parameters is available at https://tiu.nu/
pz-appendix

Element Description Handcr. Offline
gen.

Online
gen.

Village,
Tutorial,
Shop

Game assets, general design, NPCs,
storyline

X

Levels Mission & space generation,
branching & path lengths, asset
placem., combat & puzzle placem.

X

Combat
encoun-
ters

Encounter staging, difficulty ad-
justments, resource drops, boss
fights

X

Puzzles Puzzle complexity of Maze, Mov-
ing floor, and Sokoban puzzles

X

variety of procedural elements allows the investigator to make nu-
merous parts of the game responsive to game metrics (a) at design
time, before the game is being started, and (b) at run time, to adapt
the elements in response to player actions (Table 1, this is further
detailed in Section 4.2 – 4.6). The provided data logging routines
are further detailed in Section 5.

3 DESIGN CONTEXT
Procedural Zelda purposely builds upon design conventions and
assets from the game The Legend of Zelda: A link to the past; an
iconic action-RPG game that provides rich opportunities for players
to express themselves in distinct manners. The player is confronted
with ever-increasing challenges throughout the game that require
either reflexes and hand-eye coordination or solving a puzzle with
logic and wit.

The game carries conventions that have been very successful
within the action-RPG genre; the most prevalent being:
• Combat is done with some kind of weapon (often close range),
with the player having only a rudimentary control over the
weapon (a button causes a specific attack animation). The player
then complements the rudimentary combat with tools and items
found in the world.

• The player can track statistics of, e.g., the current strength of
the character (life points displayed as hearts and magic power
displayed as a green bar, see Figure 1).

• When the character has zero life points left it is game over, gets
stronger as the game progresses, either through an increase in
statistics or available tools.

• The world contains secrets to find which are often unlocked
through the use of an item, tool, solving of a puzzle or defeat of
a stronger than usual enemy.

• The story often sends the hero to a dungeon (an enclosed area)
which is filled with enemies and traps and ends in a climactic
boss fight (a much stronger enemy which often requires the use
of the item found in the dungeon to defeat it).

• Characters within the story often give hints on how to play the
game or how to proceed with the story.

Figure 1: Procedural Zelda builds upon the conventions and
assets of the game The Legend of Zelda: A Link to the Past
(illustrated). From top-left to bottom-right: fighting on a
bridge, walking through the village, receiving an important
item, fighting a boss.

Procedural Zelda builds upon these same game mechanics and
conventions, albeit that we will generate our levels algorithmically,
and the scope of the game is naturally less extensive (it provides
20 to 60 minutes of gameplay, depending on the play-style that is
adopted by the user). Indeed, we expect researchers to be readily
able to investigate facets of player experience, when the research
environment builds upon proven game conventions and upon assets
(e.g. characters, tile sets, enemies) that are already deemed effective.
Zelda games often contains combat, puzzles, story elements, explo-
ration and is an iconic title that most gamers would recognize. As
such, it enables many distinct opportunities for interaction which,
particularly when compared to 2D platform games, provides a wide
scope for possible gaming investigations and provides rich potential
for data gathering and player modelling.

4 PROCEDURAL ZELDA
We provide the Procedural Zelda game environment via GitHub.2
The game environment builds upon Solarus [25], an open-source
game engine that has implemented its own version of The Legend of
Zelda: A Link to the Past. The engine has a relatively low footprint in
terms of processing power, and already implements many gaming
assets and conventions that players will be familiar with. Procedural
Zelda has already been employed for investigating the correlation
of five-factor model personality traits, in-game observations, and
self-reported game experiences, of which the first experimental
finding will be reported in a separate article.

2Procedural Zelda is available online at https://github.com/zeldaresearch/Zelda-
ALTTP-Platform. A demo video of research using Procedural Zelda is available online
at https://tiu.nu/procedural-zelda.

https://tiu.nu/pz-appendix
https://tiu.nu/pz-appendix
https://github.com/zeldaresearch/Zelda-ALTTP-Platform
https://github.com/zeldaresearch/Zelda-ALTTP-Platform
https://tiu.nu/procedural-zelda

Procedural Zelda: A PCG Environment for Player Experience Research FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 2: Flow of the game.

Wewill subsequently discuss in detail the general structure of the
game (4.1), and the numerous procedural elements that it contains,
being a village (4.2), and components for level generation (4.3),
combat generation (4.4), puzzle generation (4.5), and exploration
rewards and an in-game shop (4.6). Note that numerous descriptions
are purposely detailed, and – as the described elements generally
are procedural in nature – they are intended to convey an intuition
of Procedural Zelda’s expressive capabilities.

4.1 General structure of the game
The game’s structure is set up as followed:
• The Village: A place where the player is introduced to the quest,
has the opportunity to learn more about the background of the
characters and prepare for the journey ahead.

• Tutorial Level: A level with no exploration options or extra re-
sources, it contains four combat rooms and one of each puzzle at
the lowest difficulty.

• Shop: The shop houses a choice of equipment pieces that could
simplify certain tasks, primarily tasks that involve getting hurt
such as the mazes, the moving floor rooms or the fights. These
pieces can be bought with money found in the levels. Exiting the
shop transports the player to the next level.

• Levels: A themed segment is made up out two levels with a
generated layout in a particular theme that contains rooms that
either generate combat, puzzles or a treasure chest. This is the
main part of the game. After completing a themed segment, the
player is transported to the shop. There are three segments in
total.

• Boss fight: A typical boss fight for a Zelda game, this is handled
by our combat generator.

• The Village again: The player finishes up the quest with a choice
on how to fulfil the quest requirements and completes the game.

4.2 Village
The handcrafted Village (Figure 3) is where the player starts his
adventure, the player is spawned near A2 with sinister music play-
ing in the background. The player is now motivated by the player
character’s father (A2) to go and seek help from the witch (C1) to
cure the player character’s brother (A1) from his illness and is given
the instruction to head east to ask her for help after picking up the
Sword and Shield from the shed.

Some of the NPCs are placed specifically to allow players to
prepare for the oncoming journey. These include the shopkeeper

Figure 3: The Village.

(B1) which sells apples to the player, which restores 1 heart of the
players health pool. The boy who lost his milk bottle (B8) reveals
that he lost his bottle and asks the player to find it among the bushes.
The player gets to keep the bottle when he finds it, which can later
be used to fill it with potion from the witch to attain background
information on the witch and to contain fairies which revive the
player on death.

To complete the game after acquiring the “Cure Flower” quest
item, the player has to talk to the brewer (B6) or the witch (C1)
to make the cure. The brewer will do this for free, and create a
strong cure. The witch will ask the player for 50 rupees (i.e. the
coins used in Zelda) and creates a diluted cure. Both will cure the
illness of the brother, thus the choice is there for flavor. When the
player presents the cure to A1 the game’s credits roll and the game
is complete. All other NPCs are non-beneficial and only add flavor
and background information to the game.

The Village is built in such a way that little interaction is required
and that conversational content can be ignored if the player wishes
to follow the instructions as fast as possible.

4.3 Level generation
In this section we will present all the parameters used when gener-
ating a level and how a level is generated. The levels are built in
four steps:
(1) A level’s content is first generated as a graph representation

which is called a mission. The mission only has information
on the connectivity of rooms, their type and the content of the
chests. The generation process is based on themission generation
process described in [1, 7].

(2) Spatial planning is laid out using themaze generator that priori-
tizes placing rooms such that the level always stretches outward.
Pathways inside the rooms are also laid out using the maze gen-
erator.

(3) Assets are placed; for the forest and swamp levels the tree
background is generated, for the cave the walls, floors and
doorways are generated. Afterwards any space left that was
designated as non-walkable is filled with static props, throwable
props (bushes or rocks) or hazardous tiles (such as water or
holes).

FDG’17, August 14-17, 2017, Hyannis, MA, USA Heijne and Bakkes

Figure 4: Level layout and use of the level length parameters
for generating a level

Table 2: The length parameters (amount of rooms) for gen-
erating a level.

Level name Branch Optional Main path Barrier
length path length length type

Tutorial N/A 0 7 bush

Forest 1st lvl 1 2 4 rock

Forest 2nd lvl 2 2 4 rock

Swamp 1st lvl 3 2 4 large skulls

Swamp 2nd lvl 4 2 4 large skulls

Caves 1st lvl 5 2 4 bomb-able blcks

Caves 2nd lvl 6 2 4 bomb-able blcks

(4) Barriers are placed, such as bushes and rocks that block specific
entrances. Treasure chests are placed.

4.3.1 Level length settings. The procedural process for determin-
ing the level layout is illustrated in Figure 4; the parameters used
in generating a level can be found in Table 2. A themed segment
(Forest / Swamp / Caves) consists of two levels. A level has a main
length of rooms which are either a puzzle or fight, added to that is
a start and an end room, and the first level of a segment has a room
with a treasure chest halfway through the main path that holds an
item with which the player can destroy the new type of barriers in
that segment. Each themed segment has a unique type of barrier
that is being placed.

An optional path entrance is placed just before the treasure room
or the halfway point that is blocked by a new type barrier, requiring
the player to go back in the first level of a segment if they want to
explore further. Each room in the optional path opens up a path
to a branch that has a specific number of rooms before entering
a room with a treasure chest that holds 100 rupees. In the second
level one of the optional treasure chests contains a heart container.

The purpose of the linearly increasing branch lengths is to in-
crease the time between the payout of the extrinsic rewards and
to avoid a ceiling effect when it comes to the number of explored
optional rooms.

4.3.2 Mission generator. The underlying mission generator is
used primarily to generate a graph that can be used within our
generation process. It uses the parameters and generation process
described in the previous section. During development the generic
implementation of the mission generation found in the paper [7]
was adapted such that one can specify a branching-factor to de-
termine how unique / static the maps should be; to determine if
the generation of maps outside of specific measurement bounds is
allowed.3

The mission generator still uses the same principle as described
in the paper; a graph representation is used with directional and
bidirectional relations, and the nodes in combination with the rela-
tion determine what the node represents in our generation process.
This allows us – if desired – to avoid stringing together multiple of
the same tasks after one another (e.g., alternate between fight and
puzzle) such that the player is predictably not bored with too much
repetitiveness. And, in addition, it allows that the main path can al-
ways contain the same amount of fights and puzzles, such that one
will get about as many encounters for fights and puzzles; during
a level with a specific difficulty in the case of static difficulty this
can be particularly important because it allows resulting encounter
data to be comparable between levels (if desired).

Once the mission generator parses the graph representation one
obtains a mission representation, which contains the data for rooms
and their connection to other rooms, barrier placement, for chest
rooms their chest contents, start and exit rooms as well as the
overall level information about difficulty, theme and type of map
(tutorial, normal or boss). This data is sent to the space generator
to generate the level layout.

4.3.3 Space generator. Our space generator can be considered
a maze generator to produce the layout of our level; it generates
the actual map. The maze generator takes in three parameters: wall
width (x pixels by y pixels), corridor width (x pixels by y pixels) and
total maze measurements (x corridors by y corridors) (illustrated
in Figure 5). The maze generator provides us with a grid where
each node contains information on which wall is open, closed or
contains a small pathway to the other node.

Starting with the entrance area at the most western room in
the middle of the “maze”, it assigns the room its number that is
associated with a room in the generated mission representation, and
it assigns the connected rooms to the adjacent rooms that have the
most space left (a random choice of a room with the most adjacent
unassigned rooms in two degrees, see Figure 6). Connections to
other rooms are designated as a small pathway, if a room is larger
than one node the walls between the nodes are designated as open.

So-called fight rooms are square and take up the size of one room,
rooms for puzzles need the extra space to be viable as puzzles and
take up the size of two rooms. Boss rooms are also square but take
up four rooms.

3Cf. [7], a replacement-grammar is employed for level generation, which can be
expanded to adapt the level’s structure during actual gameplay.

Procedural Zelda: A PCG Environment for Player Experience Research FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 5: Visual representation of the maze generation pa-
rameters

Figure 6: Placing a room within a grid. Grey is an already
present room. Green, Red and blue indicate possible loca-
tions, the colored rectangles signify the unassigned rooms
in two degrees.

We now have a grid as our spatial representation with which to
further improve our layout. The next step involves carving paths
inside the non-puzzle rooms (puzzle rooms need all the space avail-
able). For this we use the maze generator once more. We first create
a grid of the room with the corridor size of 16 pixels by 16 pixels
(the size required for our character to be able to walk through), we
then subdivide our room over the length and width into sections,
and use the center cells (with a random offset) of each section to
use our maze generation algorithm on. Using the smaller section
representation we use path-finding to open up cells from each cen-
ter cell to another cell where the section representation indicated
that there is an opening. The opened cells are widened resulting
in a pathway that connects the entrance with all exits in the room,
the still unopened cells in the grid are used for prop placement.

4.3.4 Placement of assets. The assets that we use are made up
of sprites and tiles. Sprites are objects in the game that have an
animation based on their internal state that can be interacted with
by input of the player. Tiles are static and are placed on a layer.
Tiles cannot be interacted with but can affect the player (water,

Figure 7: Themes: Top-left, Caves. Top-right, Swamp. Bot-
tom, Forest.

holes, spiked floor all cause damage); they can be arranged in a
pattern to form a prop (for example a tree is made of tiles that are
placed on multiple layers in a pattern). We handcrafted many of
these props to be used together with each theme. The produced
spatial representation of the previous section is used to fill the level
with sprites, tiles and props.

Procedural Zelda comes with assets for three distinct themes:
caves, swamp, and forest (illustrated in Figure 7). In case of the
Forest and Swamp themes, the walls and non-walkable sections
are filled with trees that are placed in a repeating pattern that is
common in the The Legend of Zelda: A Link to the Past game. These
trees are only placed if there is space to place an entire tree. The
remaining non-walkable space in the rooms is filled randomly with
either water (the player jumps a certain distance when touching
the edge of the water), throwable sprites (bushes or rocks), smaller
props or designated as empty space.

In case of the Caves theme, the wall props are placed and remain-
ing space in the walls section is filled with a specific tile, which
is also common for The Legend of Zelda: A Link to the Past. The
non-walkable space in rooms is filled randomly with either spiked
flooring (which damages and stops player movement), pits (where
the player directly falls into, receives damage and is placed back
on the last spot where the player was safely standing), throwable
sprites (mostly rocks), or smaller props.

These changes in asset placement can be used to linearly increase
difficulty besides the already present adaptable difficulty, as well as
to provide a noticeable change in the way one can move around in
the environment.

4.4 Combat generation
Combat generation is composed of staging the encounter (4.4.1),
determining resource drops (4.4.2), and optionally setting up a boss
fight (4.4.3).

4.4.1 Encounter staging. Encounter staging is provided via two
implementations that generate enemy encounters; one with static

FDG’17, August 14-17, 2017, Hyannis, MA, USA Heijne and Bakkes

Figure 8: The enemies: From left to right, Hardhat, Snap-
dragon, Minillosaur, Green knight.

Table 3: The settings for static combat, H: Hardhat, S: Snap-
dragon, M: Minillosaur, G: Green knight.

Level number Enemy spawn combinations
Tutorial [M×4] OR [G×2] OR [S×3]

Forest [M×5] OR [G×3] OR [S×5]

Swamp [M×7] OR [G×4] OR [S×6]

Caves [M×8 + H×2] OR [G×4 + H×2] OR
[S×6 + H×2] OR [H×5]

linearly scaling difficulty, and one with adaptable difficulty. Both
implementations use a specific set of enemies, illustrated in Figure 8.

The enemies each have their own behavior pattern as well as
some shared behavior:
• The enemy types Hardhat, Minillosaur and Green knight moves
towards the player once it is within 100 pixels of the player.

• The player loses half a heart when the player’s character touches
an enemy.

• The enemy types Hardhat, Snapdragon and Green knight move
about randomly before spotting the player.

• The Hardhat repels the player backward when it is hit with a
sword strike.

• The Minillosaur starts out as an immobile egg, and cracks open
once the player is within range.

• The Snapdragon always moves about randomly in a diagonal
pattern and ignores the player.

• The Green Knight’s sword repels the player’s sword attacks,
preventing damage but repels the Green Knight backwards.
The provided static difficulty is handcrafted and linearly in-

creases between levels. Hardhat enemies only spawn in the caves
on this difficulty setting, and the amount of enemies spawned are
based on observed play-tests of “average” players.

The adaptable difficulty is made with flow channels loosely in
mind [6, 13]; it balances the enemy composition in a room in such a
way that it attempts to find the optimalweight per enemy type based
on the player’s performance and actions using linear regression. The
combat’s difficulty is subsequently adjusted upward and downward
in a sinus wave pattern such that the highest difficulty is the optimal
difficulty given the player (i.e., a difficulty that the player would
just about handle).

One may expect that (hardcore) players that enjoy challenges
would prefer the adaptable difficulty over the static difficulty be-
cause it presents a more suited challenge a lot earlier than the static
difficulty, and may expect that casual players will enjoy relatively

Table 4: The loot table used for enemies and picking up
throwable props.

Type of drop Hearts Arrows Bombs Magic Rupee
Amount 1 2 1 1 4

short combat with low difficulty and therefore would prefer the
static difficulty in the earlier levels.

4.4.2 Resource drops. To decrease the amount of noise in the
difficulty of the combat we implemented so-called resource drops
in a deterministic way. That is, the amount of hearts available to the
player will determine the amount of mistakes the player can make
and consequently the difficulty of the fight. If some fights would
grant a lot of hearts and others none then it would be detrimental to
our data. As such the loot table (see Table 4 for details) is determined
beforehand, an item is dropped from the loot table randomly with
no returns whenever an enemy is killed or a throwable prop is
picked up. When the loot table is empty it is refilled.

4.4.3 Boss fights. The ’boss’ enemy always has a static difficulty
(in the provided implementation, it requires 6 hits with bomb explo-
sions) and is relatively easy as long as the player has the convention
of looking for a monster’s weakness, pays attention to auditory
(any hit with a sword bounces off) and visual cues (small minions
drop bombs) and reads the bomb bag acquisition description that
the bombs are throwable or knows the Zelda convention that the
boss is always beaten with the use of the last equipment piece found
in the dungeon.

Generally speaking, the qualities that would help improve the
player’s performance with combat, are reaction time and planning.
Timing sword swings decreases the difficulty of the Green knight
enemies the most and is useful against all enemy types. Hardhats
are more easily dealt with using items or throwable props. Using
any type of item from the shop will decrease the difficulty of the
fights. Timing the sword swings would indicate a larger precision
and less sword swings overall.

4.5 Puzzle generation
A puzzle is generated when the player enters a room that has been
designated as a puzzle room by the mission generator. Procedural
Zelda provides three distinct procedurally generated puzzle types:
a maze puzzle (4.5.1), a moving floor puzzle (4.5.2), and a Sokoban
puzzle (4.5.3).

In the provided implementation, which puzzle type is generated
is based on the amount of puzzles of each type that has been gen-
erated, the type is then chosen randomly between the types that
have been generated the least amount of times such that the gener-
ated amount remains the same but with random ordering. As with
combat generation, we implemented two variants of the difficulty,
a static linearly scaling difficulty and an adaptable version. The
adaptable version of the puzzle generation carries a simpler ver-
sion than the combat generation. That is, the difficulty increases or
decreases based on the time it took to complete the puzzle, the life
lost during the puzzle, or whether the player has died during the
puzzle or in the case of the Sokoban puzzle type the player pressed

Procedural Zelda: A PCG Environment for Player Experience Research FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 9: The hazards present in the maze: left to right, fire-
ball statue, bouncing hazard, reactive spike block, pit.

the optional “Quit puzzle” button. Implemented cut-off points have
been determined with play-tests of persons with average to high
level of skill.

4.5.1 Puzzle type: Maze. Procedural Zelda is able to procedu-
rally generate amaze in the designated room using Prim’s algorithm
[19]. This process results in a maze without loops with a fixed start-
and endpoint and random paths in between with a good amount of
branching.

The difficulty of a maze of the above type (no loops, completely
random and with fixed start- and endpoints) is usually defined by
the size of the maze which comes down to the combined length of
paths that are most likely to go towards the endpoint in the maze.
A maze is unlikely not to be solved when the player can see the
entire maze and without loops in the maze a player can reach the
end in a reasonable amount of time with just trial and error. In our
game world it is generally not desirable (though not impossible)
to make very large mazes as this typically impacts the flow of the
game and is dependent on some limitations of the Solarus game
engine. As such the following features were added to increase the
difficulty of the maze (some are illustrated in Figure 9):

• Darkness: the entire maze is covered in darkness and the player
can only see a small area ahead of him. The player can use the
Magic mirror item at the cost of magic points to illuminate the
maze for a short time.

• Pits: Some of the dead ends have black pits which cause the player
to be transported back to beginning of the maze as well as lose
life points.

• Bouncing hazards (official enemy name is Bubble): These invulner-
able enemies bounce their way through the maze and touching
them causes the player to lose life and magic points.

• Fireball spitting statues: Another invulnerable enemywhich shoots
a projectile at the player roughly every four seconds, the player
can use his shield to block the projectile or evade it through
lateral movement. This projectile moves through walls in the
maze.

• Reactive spike blocks: Yet another invulnerable enemy which
automatically moves at a fast speed towards the player when
the player is directly horizontally or vertically aligned with the
enemy and within a certain range, the enemy cannot move past
the walls of the mazes.

Table 5:Maze puzzle –Generation parameter settings per dif-
ficulty type.

Difficulty level 1 2 3 4 5

Fireball statues 0 1 2 3 4

Bouncing hazards 0 1 2 3 4

Pitfalls No Yes Yes Yes Yes

Reactive spike blocks No No No Yes Yes

Darkness Yes Yes Yes Yes Yes

Table 6: Maze puzzle + Moving floor puzzle – Settings of the
static difficulty type.

Static

Level name Difficulty

Tutorial 2

Forest 3

Swamp 4

Caves 5

Table 7: Maze puzzle + Moving floor puzzle – Settings of the
adaptable difficulty type. The amount of hearts lost (HL) or
the time spent (TS) versus the cut-off point (COP) is used to
determine the change in difficulty.

Adaptable
Hearts lost AND/OR Time spent (seconds) Difficulty

COP = 20 × ((difficulty +1)/2) change

≤ 1 HL AND TS ≤ COP +1

≤ 1 HL AND COP < TS ≤ COP ×1.5 +0.5

≤ 2 HL AND COP < TS ≤ COP +0.5

> 3 HL OR TS > COP ×1.5 -0.5

> 4 HL OR death -1

Details on provided settings for static and adaptable difficulty
can be found in Table 6 and Table 7. The settings for generating a
maze puzzle given a certain difficulty level can be found in Table 5.

Generally speaking, the likely qualities that would help in solv-
ing this puzzle type is reaction time to avoid spike blocks, pits,
projectiles and bouncing hazards and planning to block the pro-
jectiles, which would indicate a relatively small amount of life lost
and a larger amount of time taken. Reckless behaviour would most
likely result in falling in pits, relatively large losses of life, but small
amount of time spent on completing the maze.

4.5.2 Puzzle type: Moving floor. The procedurally generated
moving floor puzzle is a maze that has large corridors in which the
floor moves in a particular pattern and speed, and where touch-
ing the wall causes damage to the player. The player can see the
movement of the floor and has full visibility of the environment.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Heijne and Bakkes

Figure 10: Examples of the moving floor puzzle generation
within a level. Left has difficulty 3, right has difficulty 5.

Table 8: Moving floor puzzle – Generation parameter set-
tings per difficulty.

Difficulty level 1 2 3 4 5
Corridor width 4 3.5 3 2.5 2

(× character width)

Speed 48 pixels per second

Pattern Random between
up-down / left-right / up-right-down-left

Also this puzzle can be implemented with a static or an adaptive
difficulty level; implementation details of which are provided in
Table 6 and Table 7. The settings for generating a moving floor
puzzle given a difficulty level can be found in Table 8.

Generally speaking, the likely qualities that would help in solving
this type of puzzle is planning and timing: The floor moves in a
repeating pattern for a set amount of time at a constant speed with
visual acceleration and deceleration, if the player positions the hero
properly the player can manoeuvre through the puzzle without
harm. However, reckless action by the player will result in constant
harm from correcting mistakes while the floor continues to execute
its pattern.

4.5.3 Puzzle type: Sokoban. Finally, Procedural Zelda imple-
ments Sokoban puzzle type. Sokoban is an already existing puzzle
type which entails the following: The object of the game is to move
blocks on top of switches by pushing them with a character; there
exist at least as many movable blocks as there are switches; the
player wins when every switch has a block on top of it. The game
is heavily affected by the layout of the walkable space and the
placement of the movable blocks and switches.

Generating a Sokoban puzzle can be performed via random gen-
erated layouts which are then tested for difficulty and feasibility by
a bot [16]. Our game however relies on on-the-fly generation of puz-
zles and as such a generation pipeline would no longer (directly)
operate in real-time, though such implementations are possible
though we consider them beyond the scope of our research envi-
ronment. Indeed, there exist many fun handcrafted puzzles which
already have a generalized text format and therefore we opted to
use an existing, downloaded set of handcrafted layouts [10] that
are small enough to fit in our rooms, and for which the content is
generated in-game by parsing the adjusted set and placing them in
the room at which point our algorithm makes the layout playable.

Figure 11: Example of the Sokoban generation: Layout group
11, 1st in the group, difficulty 3. (#): Wall, (.): Switch, (@): En-
trance, (E): Exit, ($): Block, (_): Empty, (R): Teleport.

An example of the layout and details on the handcrafted puzzles
can be found in Figure 11. These adjustments have been made to
the downloaded set:

• An entrance and exit have been added, the exit is blocked by a
wall, which opens up when all switches have blocks on them.
All movable blocks and switches also disappear when the player
completes the puzzle.

• A switch was added at the entrance to reset the puzzle and tele-
portation tiles (which teleports the player on top of the reset
switch) have been added at multiple spots instead of a wall, such
that the player can always reset the puzzle even if the player
blocks off the path to the reset switch with a movable block.

• Difficulty annotation has been added to each layout based on
play-tests.

• The layouts that are similar and use the same trick to solve the
puzzle have been grouped together and ordered in difficulty.

The player must always complete each group of Sokoban puzzles
in order of difficulty, and is not suddenly presented with a higher
difficulty version while the player hasn’t completed the lower dif-
ficulty version. The layout used is randomly chosen from the list
of layouts of a certain difficulty where the layout is the first in the
group, or the player has completed the layouts that came before
in the group’s ordering. When no layouts fit the criteria the proce-
dural algorithm searches for layouts one level of difficulty lower
and fitting the same criteria. If no fitting layouts are found, it selects
a difficulty level higher than the current. The adaptable difficulty
takes the difference between current difficulty and selected diffi-
culty into account when deciding whether to change the current
difficulty setting when the puzzle is completed.

Generally speaking, Sokoban is a type of puzzle that requires
the player to spot the trick used to complete the puzzle, this can
take a long while depending on the player. Being able to plan ahead
is vital in completing these puzzles. We have therefore added a
“Quit” option for this puzzle where after a certain time a message
is displayed on screen saying that the player can press a button
to instantly complete the puzzle. This is an option to ensure that
possible research is not hindered by the player’s inability to solve a
puzzle. The adaptable difficulty and logging both take the quit op-
tion into account. The details on the settings for static and adaptable
difficulty can be found in Table 9.

Procedural Zelda: A PCG Environment for Player Experience Research FDG’17, August 14-17, 2017, Hyannis, MA, USA

Table 9: The Sokoban settings for the adaptable and static
difficulty. In case of the adaptable difficulty level is rounded
down when used.

Static Adaptable
Level name Difficulty Time spent (seconds) Diff. adapt.

Tutorial 2 ≤ 90 +1

Forest 3 > 90 and ≤ 135 +0.5

Swamp 4 > 135 -0.5

Caves 5 > 135 & pressed quit -1

4.6 Exploration rewards and the shop
Most games apply some form of extrinsic rewards to complement
the intrinsic rewards of playing, completing a challenge or complet-
ing a non-mandatory task. In the Zelda series, a shop was added to
give players more choice in their combat play style and to present
extrinsic rewards for exploration. In Procedural Zelda, the player
has a possible income of at least 300 rupees in between shops, with
a bonus on top for killing enemies. All items in the shop cost 300
rupees to buy with the exception of Apples (15 for 3) and Fairies (50
for one). Furthermore, one of the chests in the second segment in
between shops contains a full heart container which restores the
player’s life points and increases the maximum life points a player
can have.

The following purchasable items were added to the shop:
• Bottle: An extra bottle to carry an extra fairy, the amount of life
the player has available is an indicator for how reckless the player
can be before having to restock on life points. The player can
only buy one extra bottle.

• Fairy: Buying a fairy while the player has an empty bottle results
in a bottled fairy which is released upon the players death, restor-
ing the player back to life with full life. If the player has no empty
bottles the fairy is instead consumed immediately, restoring the
player to full life.

• Three apples: The player can own a maximum of 10 apples, and
the player buys 3 at a time. An apple can be consumed by the
player to restore one heart.

• Magic mirror: The player can use this item at the cost of magic
points to blind all enemies on the screen, effectively immobilizing
them and during this time, contact with the enemies no longer
causes damage. The player can also utilize this item to illuminate
a dark maze for a short time.

• Bow: The player can shoot arrows in a straight line either hori-
zontally or vertically which kills normal enemies if it hits. The
player can find arrows by lifting bushes, lifting rocks or killing
enemies. The player can hold up to 10 arrows.
The shop is inhabited by an NPC that (when desired by the

experimenter) asks the player to fill in an in-game questionnaire
about the last themed segment they completed. The NPC, the shop
and the in-game questionnaire also purposely act as an interruption
of the flow of the game such that the data gathered in the following
segment is much less based on the feeling of the segments that
came before.

Figure 12: Items in action: Top, bow and arrow. Right, fairy
release after death. Left, magic mirror.

Figure 13: The shop.

5 DATA LOGGING CAPABILITIES
Procedural Zelda currently provides data logging functions for 139
observational features. The features pertain specific behavioural
traits regarding playing style and player performance. As desired
from our own research into correlates of in-game behaviour with
player personality or self-reported experiences, numerous features
could be considered as being (partially) linked to five-factor model
traits regarding openness to experience, conscientiousness in per-
forming gaming tasks, extraversion, and behaviours that may be
linked to agreeableness and neuroticism. By providing these log-
ging capabilities, we foremost hope to provide some foundation to
diverse gaming investigations.

An overview of features for which data can be stored is given in
Table 10.4 One can observe that in the Village area 19 features are
gathered pertaining, among others, extraversion in approaching
NPCs and exploring dialogue option, extraversion in discovering
the environment, and conscientiousness in performing an assign-
ment. For each Combat encounter detailed data is gathered (54

4For an extensive list of the data logging capabilities of Procedural Zelda we refer the
reader to [12], pp. 95–102.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Heijne and Bakkes

Table 10: Overview of data logging capabilities of Procedural
Zelda.

Game element #Fts. Focus of features

Village area 19 Extraversion in approaching NPCs and explor-
ing dialogue options / Extraversion in discovering
the environment / Conscientiousness in collect-
ing distinct elements present in the environment
/ Conscientiousness in performing an assignment
/ Time spent in the village

Combat enc. 54 Number and type of enemies present in an en-
counter / The health and items carried by the
player / Specific layout elements present in the
scene / Conscientiousness in approaching the en-
counter / Performance and specific playing style
when interacting with the enemies

Puzzle areas 29 Puzzle type and its relative difficulty / Time spend
on the puzzle and puzzle elements / Number of re-
tries (where applicable) / Times the player got hurt
or made mistakes / Conscientiousness in solving
the puzzle (e.g., quitting) / Efficiency in solving
the puzzle

General int. 32 Extraversion in exploring the environment / Open-
ness to paths optional to the main path / Number
and type of rooms that the player has encountered
and completed / Rewards retrieved / Time spent
in specific (possibly optional) areas or encounters

Questionnaire 5 Optional likert-scale input on features pertaining
exploration / puzzle-solving and preference / com-
bat encounters / overall experience

features for each encounter scene), that do not only focus on com-
bat performance, but also focused on features related to playing
style (e.g., avoiding certain enemies). For Puzzle areas diverse data
(29 features) is gathered concerning the puzzle solving performance
and distinct styles therein (e.g., tendency to quit, mistakes being
made). Also for general environment interactions (i.e., not concern-
ing combat encounters and puzzles) data is being regarding on e.g.,
extraversion in exploring the environment, openness to optional
paths, and retrieved rewards (32 features). Finally, for research
purposes an optional in-game questionnaire can be queried and
store input on the user’s game experience (in our implementation,
5 features on player preferences and overall experience).

6 DISCUSSION
This paper presented a new PCG environment with a relatively
wide expressive range that builds upon the iconic The Legend
of Zelda: A Link to the Past action-RPG game; it contributed the
openly-available Procedural Zelda environment for gaming research.
Procedural Zelda is designed with player experience research in
mind, and as such allows the generative game-design to be tailored
to external metrics at design time, allows gameplay to be responsive
to in-game observations at run-time, and provides data logging
capabilities that enable themonitoring (andmodelling) of numerous
facets of observed player behaviour.

An example of an investigation for which Procedural Zelda has
been employed, is a study into the correlation of five-factor model
personality traits, in-game observations, and self-reported game
experiences. The first experimental findings of this study will be
reported in a separate article.

Acknowledgement. Part of the code present in the Procedural Zelda en-
vironment is developed by Arjen Swellengebrel, whose efforts are gratefully
acknowledged. He is sorely missed.

REFERENCES
[1] Sander Bakkes and Joris Dormans. 2010. Involving Player Experience in Dynam-

ically Generated Missions and Game Spaces. In Game-On’2010. 72–79.
[2] Sander Bakkes, Shimon Whiteson, Guangliang Li, George Viorel Vişniuc, Ef-

stathios Charitos, Norbert Heijne, and Arjen Swellengrebel. 2014. Challenge
balancing for personalised game spaces. In IEEE GEM 2014. 1–8.

[3] Paris Mavromoustakos Blom, Sander Bakkes, Chek Tien Tan, Shimon Whiteson,
DiederikMRoijers, Roberto Valenti, and TheoGevers. 2014. Towards Personalised
Gaming via Facial Expression Recognition.. In AIIDE 2014.

[4] Alessandro Canossa, Jeremy Badler, MAgy Seif El-NAsr, Stefanie Tignor, and
Randy Colvin. 2015. In Your Face(t): Impact of Personality and Context on
Gameplay Behavior. In FDG 2015.

[5] Alessandro Canossa, Josep B Martinez, and Julian Togelius. 2013. Give me a
reason to dig Minecraft and psychology of motivation. In IEEE CIG 2013. 1–8.

[6] Ben Cowley, Darryl Charles, Michaela Black, and Ray Hickey. 2008. Toward an
understanding of flow in video games. CIE 6, 2 (2008), 20.

[7] Joris Dormans and Sander Bakkes. 2011. Generating missions and spaces for
adaptable play experiences. IEEE TCIAIG 3, 3 (2011), 216–228.

[8] Anders Drachen, Christian Bauckhage, and Christian Thurau. 2015. The Age of
Analytics. IEEE TCIAIG 7, 3 (2015).

[9] Anders Drachen, Alessandro Canossa, and Georgios N Yannakakis. 2009. Player
modeling using self-organization in Tomb Raider: Underworld. In CIG 2009. 1–8.

[10] Aymeric du Peloux. 2000. Sokoban handcrafted puzzles: Mini Cosmos. (2000).
http://sneezingtiger.com/sokoban/levels/microcosmosText.html.

[11] M Seif El-Nasr, Anders Drachen, and Alessandro Canossa. 2013. Game analytics.
New York, Sprint (2013).

[12] Norbert Heijne. 2016. Investigating the Relationship between FFM, Game Literacy,
Content Generation and Game-play Preference. (2016). UvA, MSc thesis.

[13] Robin Hunicke. 2005. The case for dynamic difficulty adjustment in games. In
Proceedings of the 2005 ACM SIGCHI ACE 2005. 429–433.

[14] Antonios Liapis, G Yannakakis, and Julian Togelius. 2013. Sentient Sketchbook:
Computer-Aided Game Level Authoring. In FDG 2013.

[15] Ricardo Lopes, Ken Hilf, Luke Jayapalan, and Rafael Bidarra. 2013. Mobile
adaptive procedural content generation. In Proceedings of the PCG 2013.

[16] Yoshio Murase, Hitoshi Matsubara, and Yuzuru Hiraga. 1996. Automatic making
of Sokoban problems. In Pacific Rim Int. Conf. on Artificial Intelligence. 592–600.

[17] Juan Ortega, Noor Shaker, Julian Togelius, and Georgios N Yannakakis. 2013.
Imitating Human Playing Styles in Super Mario Bros. Ent. Comp. 4, 2 (2013),
93–104.

[18] Chris Pedersen, Julian Togelius, and Georgios N Yannakakis. 2009. Modeling
player experience in super mario bros. In IEEE CIG 2009. 132–139.

[19] Robert Clay Prim. 1957. Shortest connection networks and some generalizations.
Bell Labs Technical Journal 36, 6 (1957), 1389–1401.

[20] Rafet Sifaa, Anders Drachen, and Christian Bauckhage. 2016. Profiling in Games:
Understanding Behavior from Telemetry. In Social Interaction in Virtual Worlds.

[21] Gillian Smith and Jim Whitehead. 2010. Analyzing the expressive range of a level
generator. In Proc. of the 2010 Workshop on Proc. Cont. Gen. in Games. 4.

[22] Gillian Smith, Jim Whitehead, and Michael Mateas. 2010. Tanagra: A mixed-
initiative level design tool. In FDG 2010. 209–216.

[23] Shoshannah Tekofsky, Pieter Spronck, Martijn Goudbeek, Aske Plaat, and Jaap
van den Herik. 2015. Past our prime: A study of age and play style development
in battlefield 3. IEEE TCIAIG 7, 3 (2015), 292–303.

[24] Shoshannah Tekofsky, Pieter Spronck, Aske Plaat, Jaap Van den Herik, and Jan
Broersen. 2013. Psyops: Personality assessment through gaming behavior. In
BNAIC 2013.

[25] Christophe Thiery. 2017. Solarus Engine, an ARPG game engine. http://www.
solarus-games.org/. (2017).

[26] Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N Yannakakis. 2011.
What is procedural content generation?: Mario on the borderline. In Proc. of the
2nd Int. Workshop on Procedural Content Generation in Games. 3.

[27] Georgios N Yannakakis and John Hallam. 2009. Real-time game adaptation for
optimizing player satisfaction. IEEE TCIAIG 1, 2 (2009), 121–133.

[28] Georgios N Yannakakis and Julian Togelius. 2011. Experience-driven procedural
content generation. Affective Computing, IEEE Trans. on 2, 3 (2011), 147–161.

http://sneezingtiger.com/sokoban/levels/microcosmosText.html
http://www.solarus-games.org/
http://www.solarus-games.org/

	Abstract
	1 Introduction
	2 Design Goals
	3 Design context
	4 Procedural Zelda
	4.1 General structure of the game
	4.2 Village
	4.3 Level generation
	4.4 Combat generation
	4.5 Puzzle generation
	4.6 Exploration rewards and the shop

	5 Data Logging Capabilities
	6 Discussion
	References

