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Abstract—Designing a (video) game such that it is balanced -
i.e. fair for all players - is a prevailing challenge in game
design. Perhaps counter-intuitively, games that are symmetric
with respect to (board) design, starting conditions, and the
employed action set, are not necessarily fair games. Indeed,
perfect play from all players does not automatically lead to a
draw, but may probabilistically favour e.g., the first player to
move. Even more so, asymmetric games – in which the action
set of one player is typically highly distinct from that of another
player – are generally unbalanced unless meticulous care has been
taken to ensure that the asymmetry in the design does not skew
win probabilities. In this context, the present paper contributes
a method for automatically balancing the design of asymmetric
games. It employs Monte Carlo simulation to analyse the relative
impact of game actions, and iteratively adjusts attributes of the
game actions till the game design is balanced by approximation.
To assess the effectiveness of the proposed method, experiments
were performed with automatically balancing a set of tower-
defence games. Preliminary experimental results revealed that the
proposed method (1) is able to identify the principal component
of a game’s imbalance, and (2) can automatically adjust the game
design till it is balanced by approximation.

I. INTRODUCTION

It is generally acknowledged that a (video) game needs to be
balanced in order to be enjoyable [1]. Informally speaking, this
entails that every player, given they possess equal skill, should
have the same probability of winning the game. In symmetrical
games, where each player can always choose from the same
action set and can always start from a position analogous to
that of the opponent player(s), this is generally assumed by
default (cf., rock-paper-scissors). As such, derived from Herik
et al. [2], we consider a game a balanced (i.e. fair) game if it
is a game-theoretical draw, and both players have roughly an
equal probability on making a mistake. In games containing
asymmetrical choices however – like most multiplayer strategy
games – each player typically starts with a set of actions that
is highly distinct from that of other players, making balancing
the game design particularly challenging [3]. Foremost, the
challenge follows from attributing the relative impact of an
action on the win probability. That is, the effectiveness of an
individual action is not directly apparent, as it is dependent on
the context in which it is executed.

As current-day video games typically contain dozens to hun-
dreds of different types of (unit / building) actions, it has
become highly challenging for a human designer to identify the
precise action which causes the game design to be imbalanced.

Currently game designers rely on extensive and expensive
human testing [4], requiring a considerable amount of time
and effort which can even go far past the public release of a
game. As such, developing a method which can automatically
identify (and correct) the cause of an unbalanced game would
accelerate the design process, and can be assumed to positively
impact game design practise.

The contribution of the present paper, therefore is a method
for automatically balancing the design of asymmetric games. It
employs Monte Carlo simulation to analyse the relative impact
of game actions, and iteratively adjusts attributes of the game
actions till the game design is balanced by approximation.

II. RELATED WORK

In related work, Jaffe [5] investigates the restricted-play bal-
ance framework, arguing for a mathematical formulation of
game balance in which carefully restricted agents are played
against standard agents. The work foremost contributes to the
field of quantitative balance analysis, and is related to that
of Nelson [6], who conceptually explores strategies for auto-
matically extracting balance information from games. Also,
Mahlmann et al. [7] have previously investigated evolving
card sets to automatically balance the game of Dominion. Van
Rozen et al. [8] have performed work on generating balanced
tower defence games using MicroMachinations.

Indeed, the topic of automated game balancing is of general
interest to the gaming community (cf. e.g., Elias et el. [9],
Chapter 4.4). As such, Kim et al. [10] investigated a system
to collect and visualise data from user studies, called TRUE.
Their system analyses player deaths to find the cause of unin-
tended difficulty artefacts introduced during development. De-
beauvais et al. [11] uses aggregated data from the racing game
Forza Motorsport 4 to analyse how players use and customise
driving assists; enabling them to balance the difficulty level
of the game. Also, Lewis and Wardrip-Fruin [12] collected
and analysed large quantities of game data from the popular
MMORPG World of Warcraft which they used to investigate
common player assumptions, such believed imbalances in
specific game classes being more efficient for reaching the
maximum character level. Indeed, while a plethora of research
exists on dynamic difficulty adjustment (DDA), deep analysis
of the balance of a game design – and its principal components
– and the automated balancing thereupon, is still a relatively
under-explored field.
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Fig. 1: Action history of a best of three rock, paper, scissor game.

III. METHOD

Here we describe our method to automated game balancing
of asymmetric video games. It consists of maintaining an ad-
ministration of action histories (III.A) in the form of an action
history tree (III.B). We give an example of an (im)balanced
game, (III.C), and describe our procedure to identifying actions
of high impact on a game’s win probability (III.D); the method
builds upon Monte Carlo tree search (MCTS) techniques.

A. Action history

We consider the action history in a game to be the concatena-
tion of actions taken by a player within the game, leading
to a certain outcome. For instance, looking at a game of
best of three rock-paper-scissors (RPS). If player one plays
scissor, rock, scissors and player two plays paper, paper,
rock this leads to player two winning the game and player
one losing. The action history of this RPS game is thus
(scissor × paper), (rock × paper), (scissor × rock) which
leads to a loss for player one and a win for player two.

B. The action history tree

The simulated action histories are stored in a tree structure.
The root node of the tree is the first action of player one, and
is succeeded by the the first action of player two, then the
second action of player one, etc. In every node the observed
number of wins, draws, and loses subsequent to that action is
stored; the metrics are derived from all simulated playouts from
this node onward. Figure 2a shows the action history tree for
the action history shown in Subsection III-A. Adding another
action history to the tree, player one (Scissor, Rock, Scissor)
vs. player two (Paper, Rock, Rock), results in Figure 2b.

C. Example of an (im)balanced game

Consider the – balanced – rock-paper-scissors (RPS) game; a
zero-sum hand game usually played between two people, in
which each player simultaneously forms one of three shapes
with an outstretched hand. The action set for both players is
identical, and the game is designed such that each player has
an identical probability of winning the game. To create an
imbalanced game on the basis of RPS, a fourth action called
Spock can be introduced. The Spock action only loses against
paper, and replaces rock of player one in the second play
of the best of three RPS game (Table Ia). As a result the
win ratio of the game becomes skewed towards player one
(Table Ib) making RPS+Spock an imbalanced game. As such,
the Spock action can be identified as an action with high impact
on the game’s win probability, in this case skewing the win
probability in favour of player one.
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Fig. 2: Action history tree.

TABLE I: Results of RPS+Spock in the second play of the game (a),
and the outcome of 10000 best of three RPS+Spock games (b).

(a)

P2
Rock Paper Scissor

P1

Rock Tie P2 P1
Paper P1 Tie P2

Scissor P2 P1 Tie
Spock P1 P2 P1

(b)

Winner Ratio

Player one 42%
Tie 25%
Player two 33%

D. Discovering high impact actions in a game

In complex, actual video games, play-out information such
as that in Table Ia and Ib is typically unavailable, among
other reasons because game actions generally can not be
directly pitted against each other in isolation. What is feasible,
however, is observing the win ratio of simulated games, and
monitoring the actions played to construct a means of analysis
– such as building an action history tree.

Having an imbalanced game, the goal is to identify high
impact actions which are leading to a win disproportionately
more often than a loss. In an effort to calculate the impact
of an action on a game one first has to look at the average
win/draw/lose ratio (AWR, ADR, ALR) following an action
of a player. In other words, does an action in general lead to
a win more often than other actions of the same player.

AWRaction =
∑A

a a.win/
∑A

b (b.win+ b.draw + b.lose)

ADRaction =
∑A

a a.draw/
∑A

b (b.win+ b.draw + b.lose)

ALRaction =
∑A

a a.lose/
∑A

b (b.win+ b.draw + b.lose)
where A = all nodes of action in the action history tree

In the example of RPS+Spock of Table IIb, spock outperforms
all other actions of player one in AWR and ALR, with the
AWR of spock (49%) being substantially above the overall
win ratio of 42% (Table Ib). Second, we introduce AWRa,w,
ADRa,w and ALRa,w which is defined as the AWR, ADR,
ALR of an action a given the absence of action w; it is cal-
culated via Algorithm 1. That is, procedure CalcWDLRatio
calculates the average win/draw/loss ratio of an action a in
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TABLE II: Average win, draw and lose ratio after a specific action
got played.

(a) Rock-paper-scissors

AWR ADR ALR

P1
Rock 0.37 0.26 0.37
Paper 0.37 0.26 0.37

Scissor 0.36 0.26 0.38

P2
Rock 0.38 0.25 0.37
Paper 0.37 0.26 0.37

Scissor 0.36 0.27 0.37

(b) Rock-paper-scissors-spock

AWR ADR ALR

P1

Rock 0.42 0.24 0.33
Paper 0.40 0.25 0.34

Scissor 0.39 0.25 0.35
Spock 0.49 0.21 0.29

P2
Rock 0.32 0.24 0.44
Paper 0.34 0.25 0.40

Scissor 0.35 0.24 0.41

TABLE III: The calculated impact for each action of player one in
RPS+Spock.

Action Impact

Rock -0.06
Paper -0.04
Scissors -0.03
Spock +0.11

the game if the action w would not exist. If the average
win/draw/loss ratio is affected, a can be considered dependent
on w. Procedure CalcInternal is an internal subroutine of
procedure CalcWDLRatio. The result of the algorithm is a
vector containing [

AWRa,w

ADRa,w

ALRa,w

]
Finally we define the impact I of an action b as how much does
b affect other actions towards a higher win ratio when used in
the same game. In other words, how big of a positive/negative
impact does a specific action have on other actions and
ultimately the game.

I(b) =
∑A

a (AWRa −AWRa,b) + 0.5× (ADRa −
ADRa,b)− (ALRa −ALRa,b)

where A = all nodes of action in the action history tree

We surmise that in an imbalanced game, where the win
probability is skewed towards one player (race / class, etc.),
the action with the highest impact of the winning player is the
source of the imbalance. In our example, having calculated the
impact I of every action b with Algorithm 1, one observes that
of all actions that player one can use in RPS+Spock (Table III),
the imbalanced action spock of player one can be identified as
the action with the highest impact on the game.

IV. SIMULATOR

For our experiments, we investigate a highly asymmetric type
of strategy game, namely the popular tower defence (TD)
games. A typical TD game (illustrated in Figure 3) is highly

Algorithm 1 Calculate AWRa,w ADRa,w and ALRa,w

1: procedure CALCWDLWITHOUT(a,w)
2: result = [0,0,0]
3: for all node in actionHistoryTree.startingNodes do
4: result += CalcInternal(a, w, node, false)
5: end for
6: total = result[0] +result[1] +result[2]
7: return result /= total
8: end procedure
9:

10: procedure CALCINTERNAL(a,w, node, found)
11: result = [0,0,0]
12: if node.player != a.player then
13: for all child in node.children do
14: result += CalcInternal(a, w, child, found)
15: end for
16: return result
17: end if
18: if node.action = a then
19: result += node.result
20: found = true
21: else if node.action = w then
22: if found then
23: return -node.result
24: else
25: return result
26: end if
27: end if
28: for all child in node.children do
29: result += CalcInternal(a, w, child, found)
30: end for
31: return result
32: end procedure

asymmetric, in that one player can spawn units that traverse a
predetermined path (to attack the tower of the opponent), while
the opponent player can construct buildings alongside the path
that attack these units (to defend the tower). The offensive
player wins if she succeeds in destroying the tower of the
opponent, the defensive player wins if she can withstand these
attacks. Indeed, the actions that players can take are highly
distinct from each other, and balancing their effectiveness
generally requires meticulous manual balancing.

We developed a simulator for real-time TD games, which –
for rapid experimenting – provides the ability to decouple
graphics from actual gameplay.1 Indeed, TD is a genre which
is popular within the gaming community and offers a variety of
research opportunities such as dynamic difficulty adjustment,
map generation, and player modelling [13], [14], [15]. Our
hope is that the developed simulator may contribute to such
related branches of research as well.

A. Experimental Implementation

The developed simulator contains two races, the human race
and the alien race. Both races are distinguished by the towers
they can build (IV-E3), while having the same selection of
units and upgrades to choose from (IV-E). In this section we
first give a brief overview of how the developed game works
before explaining each design aspect in detail.

1The developed simulator is publicly available at Github https//github.com/
philiiiiiipp/multiplayer-balancing
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Fig. 3: Example 6× 6 tower defence game field.
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Fig. 4: Representation of the example 6× 6 game field in Figure 3.

In our simulated TD games, two players are playing against
each other. The game is played simultaneously on two identical
maps; one for the alien player, one for the human player.
Each player builds towers on their own map. Also, each player
sends creeps (units) to the other player’s map. Each player can
upgrade the units it will send to the other players map (once
an upgrade was chosen, all consecutive sent units will have
the improved attributes, units already sent stay the same). If a
unit reaches the end of a player’s map without getting ‘killed’
this player loses a live. If a player is at 0 or less lives, he/she
loses. If that happens to both players at the same time it’s a
tie.

B. Game field

The game field or map consists of a n × n grid of fields. A
field can be either a tower field or a unit field. The tower
fields belong to the player playing on that map for placing
towers, while the unit fields are where the opposing players
units will be walking. Units get spawned at the start field and
are walking towards the end field. Each tower field can be
uniquely identified by its position starting with zero at the top
left corner and ending at N-1 in the bottom right where N
denotes the total amount of tower fields of the map (Figure 3).

New game maps can easily be created using the notation
of Figure 4 inside a text file and placing it inside the root
directory. The framework will automatically parse the file and
convert it into a map if all of the following attributes are met.
First, exactly one start field S and exactly one end field E must
be present at the boundary regions of the map. Second, the start
and the end fields must be connected via unit fields. Third, in
every map, the way units walk must be uniquely identifiable.
Meaning, a unit field must be adjacent to exactly two other
unit fields with the exception of the start and end field which
have to have exactly one adjacent unit field.

C. Towers

In the simulator, races differ from each other with respect to
the towers that are available to them. Every tower in the game

TABLE IV: Possible unit upgrades that the players may select.

Id Attribute Initial Increase per upgrade

H Health 1.0 +0.7
M Movement 1.0 +0.4
A Amount 1.0 +0.75

is exclusive to one race. Where the human race can build the
fire, ice and archer tower, the alien race has the chain lightning,
parasite and shock tower. To provide a realistic challenge to
our method, every tower (action) is given two attributes, the
damage dealt with each shot, and the distance that it can shoot.
The distance or range of a tower is denoted in game fields
reachable from the place the tower got build using horizontal,
vertical or diagonal movement. In addition, most towers have
a unique special ability, as detailed in Table V and Table VI.

D. Game cycle

At the start of every game both players enter with the same
amount of lives and an instance of the same n × n map.
Subsequently, the game cycles through the following three
steps. (1) Both players choose one action which gets executed
right away. An action can either be to send units, to upgrade all
subsequent units in health, movement or amount or to build
a tower on one of the free tower fields of the players map.
(2) The already placed towers will pick a unit inside their
range to shoot at. The decision which unit is picked at a given
point is dependent on the type of tower choosing the target.
Fire, archer and chain lightning towers will shoot at their last
damaged target. If their last target is either dead or out of
range, they choose a target at random. Ice, parasite and shock
towers will preferably shoot at a unit currently not influenced
by their special ability. If no such unit exists they will choose
a target at random too. (3) All units walk appropriate to their
movement attribute towards the end of the game field. If a unit
walks out of the map the player playing on that map loses a
life.

If after step 3 none of the three criteria are met, the game
continues with step 1. The three end criteria are (1) a player
has 0 or less lives (the other player wins), (2) both players
have 0 or less lives (tie), or (3) game exceeded the maximum
amount of cycles (tie).

E. Actions

In the simulated tower defence game, two types of actions are
available, that is (1) actions which are available to both races
like upgrading and sending units, called global actions, and
(2) actions only available to players of a certain race, called
race specific actions, such as placing a specific tower.

1) Upgrading units: At every step of the game, a player can
choose to (1) upgrade one of the attributes of the units, or
(2) upgrade the amount of units that is spawned at starting
position. A unit has two attributes, health and movement.
Health describes the amount of damage a unit can take until
they get removed from the map. Movement describes the
amount of fields a unit walks along its path at every step.

2) Sending units: If at any step a player chooses to send units,
the game will create units using the attributes of Table IV.
Every attribute a will be set to:
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TABLE V: Towers available to the Human race.

Id Tower Damage Range Special

F Fire 0.6 1 Damages all units on one field
I Ice 1 1 Reduces movement speed by 90% for 3

steps
A Archer 1 3 -

TABLE VI: Towers available to the Alien race.

Id Tower Damage Range Special

C Chain lightning 0.4 1 Damages 3 units less than 3 fields
apart

P Parasite 0 1 Lets the hit unit walk backwards
for 2 steps

S Shock 1 1 Reduces movement speed to 0 for
3 steps

Ia + ta ∗ Ua (1)

where Ia is the initial value of attribute a, ta denotes the
amount of times a was upgraded, and Ua denotes the increase
per upgrade. While all three attributes hold floating point
values, the amount attribute only takes the integer-part into
account. E.g., if the amount is 2.5, then only 2 units will be
spawned.

3) Placing towers: Next to actions available to both races, each
race can build towers that are unique to its race (discussed in
Section IV-C). Where the human race can build the fire, ice and
archer tower, the alien race has the chain lightning, parasite
and shock tower. Every tower has two attributes, the damage
dealt with each shot and the distance it can shoot in game
fields (Table V and Table VI).

V. EXPERIMENTS

Here, we discuss two experiments that test our method to
automated game balancing in an asymmetric tower defence
video game. The first experiment evaluates to what extent our
method can identify and automatically correct an imbalance
in a reasonably well-balanced asymmetric game. The second
experiment evaluates to what extent our method can identify
and automatically correct an imbalance in a strictly imbalanced
asymmetric game.

A. Data generation

The generation of player data was performed with two Monte
Carlo tree search (MCTS) [16] agents playing against each
other. One MCTS agent was playing the alien race, the other
MCTS agent was playing the human race. The two MCTS
agents learned from 100.000 playouts of playing against each
other (backpropagating rewards to learn effective behaviour),
and the last 5.000 action histories were used to populate the
action history tree.

The specific MCTS algorithm used by the agents is referred
to as Upper Confidence Tree (UCT) [16] which is extending
the Upper Confidence Bound algorithm by Auer et al.[17] to
trees. UCT combines the exploration and the building of the
tree. The tree starts at the root node, after which the algorithm

iterates through three phases: the bandit phase, the tree building
phase, and the random walk phase.

The bandit phase starts in the root node where to agent
continually chooses an action/child node until arriving in a
leaf node. The decision which action is taken at every step
is handled as a multi armed bandit problem. The set As of
possible actions a in a node s defines the child nodes (s, a)
of s. The selected action a∗ maximises the upper confidence
bound:

r̂s,a +
√
ce log(ns)/ns,a (2)

over all a in As with r̂s,a describing the average reward
accumulated by selecting action a in state s, ns the total
number of times node s was visited and ns,a the amount of
times action a was taken from node s. The term ce handles the
exploration vs. exploitation trade-off where a high ce favours
exploration and a low ce exploitation.

The tree building phase is entered upon arrival in a leaf node.
An action is selected uniformly at random and added as a child
node of s.

The random walk phase begins after the new child node was
added to the tree. At every step an action is taken (uniformly
or heuristically) until the game ends. At this point the acquired
reward ru is back propagated towards the root node and all
nodes in this tree run are updated:

r̂s,a ←
1

ns,a + 1
(ns,a × r̂s,a + ru) (3)

ns,a ← ns,a + 1; ns ← ns + 1 (4)

Both MCTS agents where initialised with the same values for
all experiments in the following sections. I.e., r̂s,a initial is
0.5, and ce is 3 ∗

√
2. The terminal reward ru for an agent is

dependant on the outcome of the game:

ru =


10 if agent won
Lplayed − Lmax if draw
−2 ∗ Lmax if agent lost

with Lmax denoting the maximum allowed game length and
Lplayed the actual game length.

B. Experiment 1

This first experiment evaluates to what extent our method can
identify and automatically correct an imbalance in a reasonably
well-balanced asymmetric game.

1) Experimental setup: All tower attributes were initialised
manually with the designer’s best intention to create a balanced
game (Table VII). The game runs on two different maps,
a three by three map (Figure 5a) and a four by four map
(Figure 5b) where each player starts with 10 lives and the
maximum game length is set to 100 steps. Every run was
repeated three times and all numbers in the following section
depict the average of those. After the agents have played
against each other, the resulting win ratio is calculated, the
attributes of the tower with the highest impact of the winning
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TABLE VII: Experiment 1 – Tower attributes.

Id Tower Damage Range Special

F Fire 0.6 1 Damages all units on one field
I Ice 1 1 Reduces movement speed by 90%

for 3 steps
A Archer 1 3 -

C Chain lightning 0.5 1 Damages 3 units less than 3 fields
apart

P Parasite 0 1 Lets the hit unit walk backwards
for 3 steps

S Shock 0.5 1 Reduces movement speed to 0 for
3 steps

(a) Three by three map (3x3) (b) Four by four map (4x4)

Fig. 5: Maps used in the two experiments.

faction will be decreased and the experimental trial is repeated
until the difference in win ratio is smaller than 1% and the
game considered balanced.

2) Results on 3x3 map: Analysis of the provided game design
reveals a considerable difference in win ratio between the
alien and the human player, with the alien player being 34%
more likely to win the game against the human player on the
3x3 map (the human player wins 38%, the alien player 51%,
the game ties 11%). This observation leads to the conclusion
that this game is imbalanced in favour of the alien player.
Calculating the impact of each tower (Figure 6) reveals the
chain lightning tower has the largest impact on the game of
the alien player.

Following the hypothesis that in an imbalanced game the
action with the largest impact, is the action that is presumably
causing the imbalance (cf. Section III), the damage of the chain
lightning tower was gradually lowered from 0.6 to 0.3 (Ta-
ble VIII). Lowering the damage output of the chain lightning
tower ultimately resulted in a balanced game (Table VIII).
Interestingly a direct correlation between the decline of the
chain lightning tower’s impact (Figure 7) and the decline of
the alien players win ratio could be observed, indicating that,
indeed, the chain lightning tower was the action causing the
imbalance.

To verify these results, indeed, one could argue that the same
effect would have been achieved lowering the attributes of the
shock and/or parasite tower. To investigate this, the experiment
was repeated using three different settings (Table IX), where
the attributes of the parasite and/or shock tower where lowered.
Looking at the results of each setting in Table X, even
substantially lowering the attributes of any alien tower other
than the chain lightning tower does not have the same effect
on the game as lowering the attributes of the chain lightning
tower.
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Fig. 6: Impact of every tower using the attributes in Table VII.

TABLE VIII: Win ratio human vs. alien agent depending on the
damage of the chain lightning tower.

0.6 0.5 0.4 0.3

Human 0.38% 40% 42% 44%
Tie 0.11% 11% 12% 12%
Alien 0.51% 49% 46% 44%

Calculating the impact of the towers over the course of the
different settings (Figure 8) one can observe that neither
settings has a significant impact on the values. The chain
lightning tower remains the tower with the highest impact,
supporting to the conclusion that it was in fact the chain
lightning tower which caused the game to be imbalanced, and
was as such corrected adjusted for establishing a balanced
game design.

3) Results on 4x4 map: In contrast to the 3x3 map, the analysis
of the proposed game design reveals a win ratio in favour of
the human player, winning the game 17% more often than the
alien player (the human player wins 48%, the alien player 41%,
the game ties 11%). This indicates that this game is imbalanced
in favour of the human player. To find the action responsible
for the imbalance, an analysis of the impact of each tower was
performed (Figure 9). It reveals that of all towers, the archer
tower is the tower with the highest impact on the game.

To assert the correctness of the analysis, we employ the
same process as in the previous section. First the damage
of the archer tower was gradually lowered until a predictably
balanced game was achieved (Table XI). When lowering the
damage of the archer tower to 0.4, a balanced game is
achieved. Again, a clear correlation between a lower damage
and a decrease in impact of the archer tower can be observed
(Figure 10).

To independently verify that the archer tower was indeed the
source of the imbalance in the human race, we again try to
achieve balance lowering the attributes of the other towers
(fire and ice) (Table XII). As in the previous section, even
substantially lowering the attributes of the other towers did not
result in a balanced game (Table XIII). The win ratio changed
slightly in favour of the alien player, but the human player
still won the game around 7% more often. This leads to the
conclusion, that the archer tower was in fact the source of
the imbalance as suggested by its impact, and was correctly
adjusted to achieve a balanced game design.

4) Discussion of the results: In this experiment, the proposed
method was tested on two different maps using the same
tower attributes. On both maps a balanced game was achieved
automatically after adjustment of the correctly identified im-
balanced action. On both maps a correlation between decrease
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Fig. 7: Impact of the lightning tower, lowering its damage output
from 0.6 to 0.3.

TABLE IX: The different settings the experiment was repeated with.
Each setting uses Table VII as a foundation.

Setting

A Parasite effect reduced to 2 steps
B Parasite and shock effect reduced to 1 step
C Setting B and shock tower damage reduced to 0.25

of tower attributes and decrease of impact could be seen when
balancing the highest impact tower (HIT), while the impact
of it even increased if other towers attributes got lowered;
this follows naturally, as the HIT will become more and more
important as other towers get weaker.

C. Experiment 2

This second experiment evaluates to what extent our method
can identify and automatically correct an imbalance in a strictly
imbalanced asymmetric game, regardless of initial values of
the action attributes.

1) Experimental setup: To test the proposed method, the
following system was setup to automatically balance the tower
defence game. This happens in two steps, first the tower
attributes are initialised at random using the ranges described
in Table XIV. Second, the thus created game is balanced
using three different methods subsequently while recording the
balancing steps applied by each of them.

A balancing step is defined as the decrease of one attributes
value of a chosen tower using the arithmetic in Table XIV to
slowly lower the attribute action. The attributes get selected
in turns. For example, if the shock tower gets selected three
times, the damage attribute will be lowered first, followed by
the duration attribute, followed by the damage attribute. The
experiment was repeated 10 times on the same 3 × 3 map
used in experiment 1 where every player starts with 10 lives
and the maximum game length is set to 100 steps. A game is
considered balanced if the difference between the human and
the alien win ratio is below 1%.

We employ three methods for automated balancing, (1) balance
the tower with the highest impact of the winning faction, (2)
balance a random tower of the winning faction, and (3) balance
a random tower of the winning faction with the exception
of the tower with the highest impact. If the impact attribute
does accurately predict the unbalanced tower, then the first
method should use considerably fewer balancing steps than
the one choosing randomly while the method excluding the
high impact action should use more.

2) Result: The experimental results reveal that using the im-
pact to balance a game (method 1) – with an average of

TABLE X: Win ratio human vs. alien agent given setting A, B, or C.

Setting A Setting B Setting C

Human 39% 40% 41%
Tie 11% 11% 11%
Alien 50% 49% 48%
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Fig. 8: Impact of every tower after applying setting A, B, or C.

8.1 balancing steps – it is by approximately 65% faster than
choosing random towers (Table XV), outperforming method
2 in 10 out of 10 runs. Avoiding the high impact tower in
method 3 is 35% worse than picking it randomly (excluding
the runs it did not result in a balanced game) and over 2 times
worse than using the impact to balance the game. Method 3
never outperforms method 1 but does outperform method 2 in
2 out of 10 times. Method 3 was the only method which did
not result in a balanced game in 3 out of 10 times.

3) Discussion of the results: This second experiment indicated
that the proposed method can identify and automatically cor-
rect an imbalance in a strictly imbalanced asymmetric game,
regardless of initial values of the action attributes. Indeed,
it may be argued that favourable initial parameter settings
may render balancing the design a relatively straightforward
task. As the present experiment showed, if this actually would
have been the case, choosing random actions should have
outperformed our method at least once in the course of this ex-
periment. This however, was not the case. Balancing the action
with the highest calculated impact consistently outperformed
choosing randomly and was on average 65% faster in creating
a balanced game. While the experiment should be considered a
first step in our investigation, the experimental results indicated
that the proposed automated balancing method is able to
successfully balance a game design regardless of parameter
values suggested by the game designer.

VI. CONCLUSION

Creating a well balanced multiplayer game is a challenging
and tedious task requiring a large amount of of human player
feedback. The challenge however can be significantly reduced
by understanding which actions cause a game to be unbal-
anced. As such, the present paper contributed a method for
automatically balancing the design of asymmetric games. It
employs Monte Carlo simulation to analyse the relative impact
of game actions, and iteratively adjusts attributes of the game
actions till the game design is balanced by approximation. To
assess the effectiveness of the proposed method, experiments
were performed with automatically balancing a set of tower-
defence games. Preliminary experimental results revealed that
the proposed method (1) is able to identify the principal
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Fig. 9: Impact of every tower using the attributes in Table VII.

TABLE XI: Win ratio human vs. alien agent depending on the damage
of the archer tower.

1.0 0.8 0.6 0.4

Human 48% 47% 46% 44%
Tie 11% 11% 11% 11%
Alien 41% 42% 43% 45%

component of a game’s imbalance, and (2) can automatically
adjust the game design till it is balanced by approximation.

For future work, we will particularly investigate how the
present linear computational effectiveness of the method may
be enhanced further, and how the method may be embedded
in mixed-initiative game-design toolkits.
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Fig. 10: Impact of the archer tower while lowering the damage from
1.0 to 0.4.

TABLE XII: The different settings the experiment was repeated with.
Each setting uses Table VII as a foundation.

Setting

A Fire tower damage set to 0.4
B Setting A and frozen effect reduced to 40%
C Setting B and ice tower damage reduced to 0.5
D Setting C and fire tower damage reduced to 0.2

TABLE XIII: Win ratio human vs. alien agent given setting A, B, C,
or D.

Setting A Setting B Setting C Setting D

Human 47% 48% 46% 46%
Tie 11% 11% 11% 11%
Alien 42% 41% 43% 43%

TABLE XIV: Experiment 2 – Tower attributes.

Id Tower Attribute Range Balancing step

F Fire damage 0.0 - 1.0 ∗0.9

I Ice damage 0.0 - 1.0 ∗0.9
hindrance 0.0 - 1.0 ∗0.9
duration 1 - 9 −1

A Archer damage 0.0 - 1.0 ∗0.9

C Chain lightning damage 0.0 - 1.0 ∗0.9
jumps 1 - 5 −1
length 1 - 5 −1

P Parasite damage 0.0 - 1.0 ∗0.9
duration 1 - 9 −1

S Shock damage 0.0 - 1.0 ∗0.9
duration 1 - 9 - 1

TABLE XV: Experiment 2 – The amount of times a tower’s attribute
had to be adjusted in order to achieve a balanced game. (∗) = Balance
could not be achieved.

Method 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Avg.

1. 3 5 18 5 2 8 11 14 1 14 8.1
2. 4 9 19 6 9 18 15 26 3 25 13.4
3. 14 41 23 24 ∗ 9 13 ∗ 3 ∗ 18.1
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